Resident-Based Store Recommendation Model for Community Commercial Planning | SpringerLink
Skip to main content

Resident-Based Store Recommendation Model for Community Commercial Planning

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14176))

Included in the following conference series:

  • 1046 Accesses

Abstract

The objective of community commercial planning is to identify appropriate stores to operate in a community shopping center, catering to the daily needs of residents and enhancing the appeal of the shopping center. However, obtaining data on the characteristics of all residents in the community is a major challenge, and practical methods for selecting suitable stores based on resident characteristics are unavailable. To address these issues, we propose a model that leverages mutual information maximization to learn representations of valuable residents in the shopping area and assess their value. Our key innovation is a value-ranking encoder-decoder that learns the characteristics of all residents in the community and recommends the most suitable store for each storefront. To balance the diversity and competition of businesses within the shopping center, we introduce a diversity loss function. Extensive experimental results show the effectiveness of our model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11210
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14013
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  2. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  3. Chebat, J.C., Sirgy, M.J., Grzeskowiak, S.: How can shopping mall management best capture mall image? J. Bus. Res. 63(7), 735–740 (2010)

    Article  Google Scholar 

  4. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation, vol. 11211, pp. 833–851 (2018)

    Google Scholar 

  5. Cheng, E.W., Li, H., Yu, L.: The analytic network process (ANP) approach to location selection: a shopping mall illustration. Constr. Innov. 5(2), 83–97 (2005)

    Article  Google Scholar 

  6. Cho, K., et al.: Learning phrase representations using rnn encoder-decoder for statistical machine translation. In: Conference on Empirical Methods in Natural Language Processing, pp. 1724–1734 (2014). arXiv:1406.1078

  7. Chopra, S., Auli, M., Rush, A.M.: Abstractive sentence summarization with attentive recurrent neural networks, pp. 93–98 (2016)

    Google Scholar 

  8. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)

    Article  MATH  Google Scholar 

  9. Dey, R., Salem, F.M.: Gate-variants of gated recurrent unit (gru) neural networks, pp. 1597–1600 (2017). arXiv:1701.05923

  10. Kim, I., Christiansen, T., Feinberg, R.A., Choi, H.: Mall entertainment and shopping behaviors: a graphical modeling approach, vol. 32, pp. 487–492 (2005)

    Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks, vol. 60, pp. 84–90 (2017)

    Google Scholar 

  12. Laroche, M., Teng, L., Michon, R., Chebat, J.C.: Incorporating service quality into consumer mall shopping decision making: a comparison between English and French Canadian consumers. J. Serv. Mark. 19(3), 157–163 (2005)

    Article  Google Scholar 

  13. Lee, S., Min, C., Yoo, C., Song, J.: Understanding customer malling behavior in an urban shopping mall using smartphones. In: UbiComp (Adjunct Publication), pp. 901–910 (2013)

    Google Scholar 

  14. van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  15. Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., Shroff, G.: Lstm-based encoder-decoder for multi-sensor anomaly detection. arxiv:1607.00148 (2016)

  16. Mao, X.J., Shen, C., Yang, Y.B.: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. Adv. Neural Inf. Process. Syst. 29, 2802–2810 (2016)

    Google Scholar 

  17. Menard, S.,: Applied Logistic Regression Analysis, vol. 45, p. 534 (1996)

    Google Scholar 

  18. Miao, Y.: A machine-learning based store layout strategy in shopping mall. In: MacIntyre, J., Zhao, J., Ma, X. (eds.) SPIOT 2020. AISC, vol. 1282, pp. 170–176. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-62743-0_24

    Chapter  Google Scholar 

  19. Nallapati, R., Zhou, B., dos Santos, C.N., Çaglar Gülçehre, Xiang, B.: Abstractive text summarization using sequence-to-sequence rnns and beyond, pp. 280–290 (2016)

    Google Scholar 

  20. Nguyen, H., Bougares, F., Tomashenko, N.A., Estève, Y., Besacier, L.: Investigating self-supervised pre-training for end-to-end speech translation, pp. 1466–1470 (2020)

    Google Scholar 

  21. Okura, S., Tagami, Y., Ono, S., Tajima, A.: Embedding-based news recommendation for millions of users. In: ACM Knowledge Discovery and Data Mining, pp. 1933–1942 (2017)

    Google Scholar 

  22. Oord, A.V.D., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  23. Quinlan, J.R.: C4.5: programs for machine learning (1993)

    Google Scholar 

  24. Rajagopal: Growing shopping malls and behaviour of urban shoppers. J. Retail Leisure Prop. 8, 99–118 (2009)

    Article  MathSciNet  Google Scholar 

  25. Rush, A.M., Chopra, S., Weston, J.: A neural attention model for abstractive sentence summarization. In: Conference on Empirical Methods in Natural Language Processing, pp. 379–389 (2015). arXiv:1509.0068

  26. Shim, B., Choi, K., Suh, Y.: CRM strategies for a small-sized online shopping mall based on association rules and sequential patterns. Expert Syst. Appl. 39(9), 7736–7742 (2012)

    Article  Google Scholar 

  27. Teller, C., Schnedlitz, P.: Drivers of agglomeration effects in retailing: the shopping mall tenant’s perspective. J. Mark. Manag. 28(9–10), 1043–1061 (2012)

    Article  Google Scholar 

  28. Xie, J., Jiang, S., Xie, W., Gao, X.: An efficient global K-means clustering algorithm. J. Comput. 6(2), 271–279 (2011)

    Article  Google Scholar 

  29. Zhai, S., Chang, K.H., Zhang, R., Zhang, Z.: Deepintent: learning attentions for online advertising with recurrent neural networks. In: ACM Knowledge Discovery and Data Mining, pp. 1295–1304 (2016)

    Google Scholar 

  30. Zhang, J., Du, J., Dai, L.: A GRU-based encoder-decoder approach with attention for online handwritten mathematical expression recognition. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 01, pp. 902–907 (2017)

    Google Scholar 

  31. Zhou, Q., Yang, N., Wei, F., Zhou, M.: Selective encoding for abstractive sentence summarization, pp. 1095–1104 (2017). arxiv:1704.07073

  32. Zolfani, S.H., Aghdaie, M.H., Derakhti, A., Zavadskas, E.K., Varzandeh, M.H.M.: Decision making on business issues with foresight perspective; an application of new hybrid MCDM model in shopping mall locating. Expert Syst. Appl. 40(17), 7111–7121 (2013)

    Article  Google Scholar 

  33. Önüt, S., Efendigil, T., Kara, S.S.: A combined fuzzy MCDM approach for selecting shopping center site: an example from Istanbul, Turkey. Expert Syst. Appl. 37(3), 1973–1980 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, K., Li, Y., He, X. (2023). Resident-Based Store Recommendation Model for Community Commercial Planning. In: Yang, X., et al. Advanced Data Mining and Applications. ADMA 2023. Lecture Notes in Computer Science(), vol 14176. Springer, Cham. https://doi.org/10.1007/978-3-031-46661-8_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46661-8_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46660-1

  • Online ISBN: 978-3-031-46661-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics