Enhancing Multimedia Recommendation Through Item-Item Semantic Denoising and Global Preference Awareness | SpringerLink
Skip to main content

Enhancing Multimedia Recommendation Through Item-Item Semantic Denoising and Global Preference Awareness

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14176))

Included in the following conference series:

  • 1093 Accesses

Abstract

Multimedia recommendation aims to predict whether users will interact with multimodal items. A few recent works that explicitly learn the semantic structure between items using multimodal features manifest impressive performance gains. This is mainly attributed to the capability of graph convolutional networks (GCNs) to learn superior item representations by propagating and aggregating information from high-order neighbors on the semantic structure. However, they still suffer from two major challenges: a) the noisy relations (edges) in the item-item semantic structure disrupt information propagation and generate low-quality item representations, which impairs the effectiveness and robustness of existing methods; b) the lack of an optimization objective that exploits informative samples and global preference information leads to suboptimal training of the model, which makes users and items indistinguishable in the embedding space. To overcome these challenges, we propose Enhancing Multi media Recommendation through Item-Item Semantic Denoising and Global Preference Awareness (MMGPA). Specifically, the model contains the following two components: (1) a modal semantic representation network is carefully designed to learn the high-quality multimodal representation of items by modeling the denoised item-item semantic structure, and (2) a global preference-aware optimization objective prioritizes the most informative hard sample pairs while constraining the multiple preference distances to better separate the embedding space. Extensive experimental results demonstrate that the proposed method outperforms various state-of-the-art competitors on three public benchmark datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11210
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14013
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, J., Zhang, H., He, X., Nie, L., Liu, W., Chua, T.: Attentive collaborative filtering: multimedia recommendation with item- and component-level attention. In: SIGIR, pp. 335–344. ACM (2017)

    Google Scholar 

  2. Chen, M., Wei, Z., Huang, Z., Ding, B., Li, Y.: Simple and deep graph convolutional networks. In: ICML. Proceedings of Machine Learning Research, vol. 119, pp. 1725–1735. PMLR (2020)

    Google Scholar 

  3. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: ICML. Proceedings of Machine Learning Research, vol. 119, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  4. Chen, Y., Wu, L., Zaki, M.J.: Iterative deep graph learning for graph neural networks: better and robust node embeddings. In: NeurIPS (2020)

    Google Scholar 

  5. Ding, J., Quan, Y., Yao, Q., Li, Y., Jin, D.: Simplify and robustify negative sampling for implicit collaborative filtering. In: NeurIPS (2020)

    Google Scholar 

  6. Gao, Z., Cheng, Z., Pérez, F., Sun, J., Volkovs, M.: MCL: mixed-centric loss for collaborative filtering. In: WWW, pp. 2339–2347. ACM (2022)

    Google Scholar 

  7. He, R., McAuley, J.J.: VBPR: visual Bayesian personalized ranking from implicit feedback. In: AAAI, pp. 144–150. AAAI Press (2016)

    Google Scholar 

  8. He, X., Chen, T., Kan, M., Chen, X.: Trirank: review-aware explainable recommendation by modeling aspects. In: CIKM, pp. 1661–1670. ACM (2015)

    Google Scholar 

  9. He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: Lightgcn: simplifying and powering graph convolution network for recommendation. In: SIGIR, pp. 639–648. ACM (2020)

    Google Scholar 

  10. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (Poster). OpenReview.net (2017)

    Google Scholar 

  11. Liu, Q., Wu, S., Wang, L.: Deepstyle: learning user preferences for visual recommendation. In: SIGIR, pp. 841–844. ACM (2017)

    Google Scholar 

  12. Ma, C., Ma, L., Zhang, Y., Tang, R., Liu, X., Coates, M.: Probabilistic metric learning with adaptive margin for top-k recommendation. In: KDD, pp. 1036–1044. ACM (2020)

    Google Scholar 

  13. McAuley, J.J., Targett, C., Shi, Q., van den Hengel, A.: Image-based recommendations on styles and substitutes. In: SIGIR, pp. 43–52. ACM (2015)

    Google Scholar 

  14. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Ann. Rev. Sociol. 27(1), 415–444 (2001)

    Article  Google Scholar 

  15. Mu, Z., Zhuang, Y., Tan, J., Xiao, J., Tang, S.: Learning hybrid behavior patterns for multimedia recommendation. In: ACM Multimedia, pp. 376–384. ACM (2022)

    Google Scholar 

  16. Reimers, N., Gurevych, I.: Sentence-bert: sentence embeddings using siamese bert-networks. In: EMNLP/IJCNLP (1), pp. 3980–3990. Association for Computational Linguistics (2019)

    Google Scholar 

  17. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: bayesian personalized ranking from implicit feedback. In: UAI, pp. 452–461. AUAI Press (2009)

    Google Scholar 

  18. Rong, Y., Huang, W., Xu, T., Huang, J.: Dropedge: towards deep graph convolutional networks on node classification. In: ICLR. OpenReview.net (2020)

    Google Scholar 

  19. Sohn, K.: Improved deep metric learning with multi-class n-pair loss objective. In: NIPS, pp. 1849–1857 (2016)

    Google Scholar 

  20. Song, H.O., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted structured feature embedding. In: CVPR, pp. 4004–4012. IEEE Computer Society (2016)

    Google Scholar 

  21. Wang, X., He, X., Wang, M., Feng, F., Chua, T.: Neural graph collaborative filtering. In: SIGIR, pp. 165–174. ACM (2019)

    Google Scholar 

  22. Wang, X., Han, X., Huang, W., Dong, D., Scott, M.R.: Multi-similarity loss with general pair weighting for deep metric learning. In: CVPR, pp. 5022–5030. Computer Vision Foundation/IEEE (2019)

    Google Scholar 

  23. Wei, Y., Wang, X., Nie, L., He, X., Chua, T.: Graph-refined convolutional network for multimedia recommendation with implicit feedback. In: ACM Multimedia, pp. 3541–3549. ACM (2020)

    Google Scholar 

  24. Wei, Y., Wang, X., Nie, L., He, X., Hong, R., Chua, T.: MMGCN: multi-modal graph convolution network for personalized recommendation of micro-video. In: ACM Multimedia, pp. 1437–1445. ACM (2019)

    Google Scholar 

  25. Wu, F., Jr., A.H.S., Zhang, T., Fifty, C., Yu, T., Weinberger, K.Q.: Simplifying graph convolutional networks. In: ICML. Proceedings of Machine Learning Research, vol. 97, pp. 6861–6871. PMLR (2019)

    Google Scholar 

  26. Wu, J., Wang, X., Feng, F., He, X., Chen, L., Lian, J., Xie, X.: Self-supervised graph learning for recommendation. In: SIGIR, pp. 726–735. ACM (2021)

    Google Scholar 

  27. Zhang, J., Zhu, Y., Liu, Q., Wu, S., Wang, S., Wang, L.: Mining latent structures for multimedia recommendation. In: ACM Multimedia, pp. 3872–3880. ACM (2021)

    Google Scholar 

  28. Zhang, J., Zhu, Y., Liu, Q., Zhang, M., Wu, S., Wang, L.: Latent structure mining with contrastive modality fusion for multimedia recommendation. IEEE Trans. Knowl. Data Eng. (2022)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China No. 62272332, the Major Program of the Natural Science Foundation of Jiangsu Higher Education Institutions of China No. 22KJA520006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Zheng, S., Zhou, Q., Chen, W., Zhao, L. (2023). Enhancing Multimedia Recommendation Through Item-Item Semantic Denoising and Global Preference Awareness. In: Yang, X., et al. Advanced Data Mining and Applications. ADMA 2023. Lecture Notes in Computer Science(), vol 14176. Springer, Cham. https://doi.org/10.1007/978-3-031-46661-8_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46661-8_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46660-1

  • Online ISBN: 978-3-031-46661-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics