Abstract
Detecting small, multi-scale, and easily obscured traffic signs in real-world scenarios presents a persistent challenge. This paper proposes an approach that utilizes a multi-scale feature pyramid module to capture hierarchical features, facilitating robust detection of traffic signs across varying viewing angles and scales. To aggregate features at different scales and eliminate background interference, we employ a superposition of null convolution kernels with varying dilation rates, expanding the perceptual field from small to large. This effectively covers the object distribution across multiple scales while enhancing the resolution of the final output feature map for improved small target localization. Our method has demonstrated its effectiveness and superiority over several state-of-the-art approaches through extensive experiments conducted on two public traffic sign detection datasets.
Y. Ke and W. Mo—Contribute equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)
Cai, Z., Vasconcelos, N.: Cascade r-CNN: high quality object detection and instance segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 43(5), 1483–1498 (2019)
Chen, Q., Wang, Y., Yang, T., Zhang, X., Cheng, J., Sun, J.: You only look one-level feature. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13039–13048 (2021)
Elsagheer Mohamed, S.A., AlShalfan, K.A.: Intelligent traffic management system based on the internet of vehicles (IoV). J. Adv. Transp. 2021, 1–23 (2021)
Feng, C., Zhong, Y., Gao, Y., Scott, M.R., Huang, W.: TOOD: task-aligned one-stage object detection. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3490–3499. IEEE Computer Society (2021)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
Houben, S., Stallkamp, J., Salmen, J., Schlipsing, M., Igel, C.: Detection of traffic signs in real-world images: the German traffic sign detection benchmark. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2013)
Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P.T.P.: On large-batch training for deep learning: generalization gap and sharp minima. arXiv preprint arXiv:1609.04836 (2016)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of The IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, Y., Peng, J., Xue, J.H., Chen, Y., Fu, Z.H.: Tsingnet: scale-aware and context-rich feature learning for traffic sign detection and recognition in the wild. Neurocomputing 447, 10–22 (2021)
Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., Lin, D.: Libra R-CNN: towards balanced learning for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 821–830 (2019)
Qiao, S., Wang, H., Liu, C., Shen, W., Yuille, A.: Micro-batch training with batch-channel normalization and weight standardization. arXiv preprint arXiv:1903.10520 (2019)
Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems 28 (2015)
Shen, L., You, L., Peng, B., Zhang, C.: Group multi-scale attention pyramid network for traffic sign detection. Neurocomputing 452, 1–14 (2021)
Wang, J., Chen, Y., Dong, Z., Gao, M.: Improved yolov5 network for real-time multi-scale traffic sign detection. Neural Comput. Appl. 35(10), 7853–7865 (2022)
Wu, Y., et al.: Rethinking classification and localization for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10186–10195 (2020)
Yao, Y., Han, L., Du, C., Xu, X., Jiang, X.: Traffic sign detection algorithm based on improved yolov4-tiny. Signal Process.: Image Commun. 107, 116783 (2022)
Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)
Zhang, H., Wang, Y., Dayoub, F., Sunderhauf, N.: Varifocalnet: an iou-aware dense object detector. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8514–8523 (2021)
Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: Mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)
Zhang, S., Chi, C., Yao, Y., Lei, Z., Li, S.Z.: Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9759–9768 (2020)
Acknowledgment
This work is supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region (2020D01C33).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ke, Y., Mo, W., Li, Z., Cao, R., Zhang, W. (2023). MDCN: Multi-scale Dilated Convolutional Enhanced Residual Network for Traffic Sign Detection. In: Yang, X., et al. Advanced Data Mining and Applications. ADMA 2023. Lecture Notes in Computer Science(), vol 14176. Springer, Cham. https://doi.org/10.1007/978-3-031-46661-8_39
Download citation
DOI: https://doi.org/10.1007/978-3-031-46661-8_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-46660-1
Online ISBN: 978-3-031-46661-8
eBook Packages: Computer ScienceComputer Science (R0)