A Multimodal Text Block Segmentation Framework for Photo Translation | SpringerLink
Skip to main content

A Multimodal Text Block Segmentation Framework for Photo Translation

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14357))

Included in the following conference series:

  • 576 Accesses

Abstract

Nowadays, with the vigorous development of OCR (Optical Character Recognition) and machine translation, photo translation technology brings great convenience to people’s life and study. However, when translating the content of an image line by line, the lack of contextual information in adjacent semantic-related text lines will seriously influence the actual effect of translation, making it difficult for people to understand. To tackle the above problem, we propose a novel multimodal text block segmentation encoder-decoder model. Specifically, we construct a convolutional encoder to extract the multimodal representation which combines visual, semantic, and positional features together for each text line. In the decoder stage, the LSTM (Long Short Term Memory) module is employed to output the predicted segmentation sequence inspired by the pointer network. Experimental results illustrate that our model outperforms the other baselines by a large margin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8464
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allahyari, M., et al.: Text summarization techniques: a brief survey. arXiv preprint arXiv:1707.02268 (2017)

  2. Antol, S., et al.: VQA: visual question answering. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2425–2433 (2015)

    Google Scholar 

  3. Bahdanau, D., Cho, K.H., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: 3rd International Conference on Learning Representations, ICLR 2015 (2015)

    Google Scholar 

  4. Caglayan, O., et al.: Cross-lingual visual pre-training for multimodal machine translation. In: arXiv preprint arXiv:2101.10044 (2021)

  5. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154–6162 (2018)

    Google Scholar 

  6. D’Informatique, D.E., Ese, N., Esent, P., Au, E., Frasconi, P.P.: Long short-term memory in recurrent neural networks. EPFL (2001)

    Google Scholar 

  7. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  10. Li, L., Gao, F., Bu, J., Wang, Y., Yu, Z., Zheng, Q.: An end-to-end OCR Text Re-organization sequence learning for Rich-Text detail image comprehension. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 85–100. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_6

    Chapter  Google Scholar 

  11. Liao, M., Shi, B., Bai, X., Wang, X., Liu, W.: Textboxes: a fast text detector with a single deep neural network. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  12. Lin, T.Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  13. Long, S., Ruan, J., Zhang, W., He, X., Wu, W., Yao, C.: TextSnake: a flexible representation for detecting text of arbitrary shapes. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 20–36 (2018)

    Google Scholar 

  14. Mikolov, T., KarafiÍćt, M., Burget, L., Cernock, J., Khudanpur, S.: Recurrent neural network based language model. In: Interspeech, Conference of the International Speech Communication Association, Makuhari, Chiba, Japan, September (2015)

    Google Scholar 

  15. Neubeck, A., Van Gool, L.: Efficient non-maximum suppression. In: 18th International Conference on Pattern Recognition (ICPR 2006). vol. 3, pp. 850–855. IEEE (2006)

    Google Scholar 

  16. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. Proceedings of the 40th annual meeting of the Association for Computational Linguistics, pp. 311–318 (2002)

    Google Scholar 

  17. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  18. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  19. Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(11), 2298–2304 (2016)

    Article  Google Scholar 

  20. Shi, B., Wang, X., Lyu, P., Yao, C., Bai, X.: Robust scene text recognition with automatic rectification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4168–4176 (2016)

    Google Scholar 

  21. Smith, L.N., Topin, N.: Super-convergence: very fast training of neural networks using large learning rates. Artif. Intell. Mach. Learn. Multi-Domain Oper. Appl. 11006, 369–386 (2019)

    Google Scholar 

  22. St\(\acute{{\rm l}}\)źn, A., Berard, A., Besacier, L., Gall\(\acute{{\rm l}}\)ę, M.: Multilingual unsupervised neural machine translation with denoising adapters. In: Empirical Methods in Natural Language Processing (2021)

    Google Scholar 

  23. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: NIPS (2014)

    Google Scholar 

  24. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  25. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: Advances in Neural Information Processing Systems, pp. 2692–2700 (2015)

    Google Scholar 

  26. Wang, W., et al.: Shape robust text detection with progressive scale expansion network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9336–9345 (2019)

    Google Scholar 

  27. Wu, J., et al.: A multimodal attention fusion network with a dynamic vocabulary for textVQA. Pattern Recogn. 122, 108214 (2022)

    Article  Google Scholar 

  28. Xie, Z., Huang, Y., Zhu, Y., Jin, L., Liu, Y., Xie, L.: Aggregation cross-entropy for sequence recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6538–6547 (2019)

    Google Scholar 

  29. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: International Conference on Machine Learning, pp. 2048–2057 (2015)

    Google Scholar 

  30. Yan, R., Peng, L., Xiao, S., Yao, G.: Primitive representation learning for scene text recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 284–293 (2021)

    Google Scholar 

  31. Zhou, X., et al.: EAST: an efficient and accurate scene text detector. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5551–5560 (2017)

    Google Scholar 

  32. Zhu, Y., Chen, J., Liang, L., Kuang, Z., Jin, L., Zhang, W.: Fourier contour embedding for arbitrary-shaped text detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3123–3131 (2021)

    Google Scholar 

  33. Zhu, Y., Du, J.: TextMountain: accurate scene text detection via instance segmentation. Pattern Recogn. 110, 107336 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiajia Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, J. et al. (2023). A Multimodal Text Block Segmentation Framework for Photo Translation. In: Lu, H., et al. Image and Graphics . ICIG 2023. Lecture Notes in Computer Science, vol 14357. Springer, Cham. https://doi.org/10.1007/978-3-031-46311-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46311-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46310-5

  • Online ISBN: 978-3-031-46311-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics