Abstract
Smart computing has demonstrated huge potential for various application sectors such as personalized healthcare and smart robotics. Smart computing aims bringing computing close to the source where the data is generated or stored. Memristor-based Computation-In-Memory (CIM) has the potential to realize such smart computing for data and computation intensive applications. This paper presents an overview and design present of CIM, covering from the architecture and circuit level down to the device level. On the circuit and device level, accelerators for machine learning will be presented and discussed, focusing on variability and reliability effects. We will discuss these aspects for Redox-based Resistive Random Access Memories (ReRAM) based on the Valence Change Mechanism (VCM) by employing the compact model JART VCM v1b.
This work was funded in part by EU’s Horizon Europe research and innovation programme under grant agreement No. 101070374, in part by the Deutsche Forschungsgemeinschaft (SFB 917), and in part by the Federal Ministry of Education and Research (BMBF, Germany) in the project NEUROTEC II (project numbers 16ME0398K and 16ME0399).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Patterson, D.A.: “Future of computer architecture,’’ in Berkeley EECS Annual Research Symposium (BEARS). College of Engineering, UC Berkeley, US (2006)
Hamdioui, S., et al.: Memristor for computing: myth or reality?. In: DATE (2017)
Gebregiorgis, A., et al.: Tutorial on memristor-based computing for smart edge applications. Memories-Mater. Devices Circ. Syst. 4, 100025 (2023)
Diware, S., et al.: Accurate and energy-efficient bit-slicing for RRAM-based neural networks. TETCI 7(1), 164–177 (2022)
Gebregiorgis, A., et al.: A survey on memory-centric computer architectures. JETC 18(4), 1–50 (2022)
Singh, A., et al.: Low-power memristor-based computing for edge-AI applications. In: ISCAS (2021)
Zidan, M.A., Strachan, J.P., Lu, W.D.: The future of electronics based on memristive systems. Nat. Electron. 1, 22–29 (2018)
Shalf, J.: The future of computing beyond Moore’s Law. Phil. Trans. R. Soc. A 378, 20190061 (2020)
Wuttig, M., Yamada, N.: Phase change materials for rewriteable data storage. Nat. Mater. 6, 824 (2007)
Apalkov, D., Dieny, B., Slaughter, J.M.: Magnetoresistive random access memory. Proc. IEEE 104, 1796–1830 (2016)
Dittmann, R., Menzel, S., Waser, R.: Nanoionic memristive phenomena in metal oxides: the valence change mechanism. Adv. Phys. 70(2), 155–349 (2022)
Waser, R., Dittmann, R., Staikov, G., Szot, K.: Redox-based resistive switching memories - nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21(25–26), 2632–2663 (2009)
Yu, J., et al.: The power of computation-in-memory based on memristive devices. In: ASP-DAC (2020)
Kanerva, P.: Hyperdimensional computing: an introduction to computing in distributed representation with high-dimensional random vectors. Cogn. Comput. 1, 139–159 (2009)
Yang, J.J., et al.: Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3(7), 429–433 (2008)
Hardtdegen, A., Torre, C.L., Cüppers, F., Menzel, S., Waser, R., Hoffmann-Eifert, S.: Improved switching stability and the effect of an internal series resistor in HfO\(_{2}\)/TiO\(_{x}\) bilayer ReRAM cells. IEEE Trans. Electron Devices 65(8), 3229–3236 (2018)
Wiefels, S., von Witzleben, M., Hüttemann, M., Böttger, U., Waser, R., Menzel, S.: Impact of the ohmic electrode on the endurance of oxide based resistive switching memory. IEEE Trans. Electron Devices 68(3), 1024–1030 (2021)
Rieck, J.L., Hensling, F.V., Dittmann, R.: Trade-off between variability and retention of memristive epitaxial SrTiO\(_3\) devices. APL Mater. 9(2), 21110/1-7 (2021)
Kopperberg, N., Wiefels, S., Liberda, S., Waser, R., Menzel, S.: A consistent model for short-term instability and long-term retention in filamentary oxide-based memristive devices. ACS Appl. Mater. Interfaces. 13(48), 58066–58075 (2021)
Kim, T., et al.: Spiking neural network (snn) with memristor synapses having non-linear weight update. Front. Comput. Neurosci. 15, 646125 (2021)
Quesada, E.P., et al.: Experimental assessment of multilevel RRAM-based vector-matrix multiplication operations for in-memory computing. IEEE Trans. Electron Devices 70, 2009–2014 (2023)
Bengel, C., Dixius, L., Waser, R., Wouters, D.J., Menzel, S.: Bit slicing approaches for variability aware ReRAM CIM macros. IT - Inf. Technol. 65, 3–12 (2023)
Wiefels, S.; Reliability aspects in resistively switching valence change memory cells. PhD thesis (2021)
Wiefels, S., Bengel, C., Kopperberg, N., Zhang, K., Waser, R., Menzel, S.: HRS instability in oxide based bipolar resistive switching cells. IEEE Trans. Electron Devices 67(10), 4208–4215 (2020)
Puglisi, F.M., Zagni, N., Larcher, L., Pavan, P.: Random telegraph noise in resistive random access memories: compact modeling and advanced circuit design. IEEE Trans. Electron Devices 65(7), 2964–2972 (2018)
Cüppers, F., et al.: Exploiting the switching dynamics of HfO\(_{2}\)-based ReRAM devices for reliable analog memristive behavior. APL Mater 7(9), 91105/1-9 (2019)
Bengel, C., et al.: Variability-aware modeling of filamentary oxide based bipolar resistive switching cells using SPICE level compact models. IEEE Trans. Circ. Syst. I: Regul. Pap. (TCAS-1) 67(12), 4618–4630 (2020)
Bengel, C., Siemon, A., Rana, V., Menzel, S.: Implementation of multinary Lukasiewicz logic using memristive devices. In: 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea, 22–28 May 2021. IEEE (2021)
Bayat, F.M., Prezioso, M., Chakrabarti, B., Nili, H., Kataeva, I., Strukov, D.: Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits. Nat. Commun. 9(1), 2331 (2018)
Bae, W., Yoon, K.J.: Comprehensive read margin and BER analysis of one selector-one memristor crossbar array considering thermal noise of memristor with noise-aware device model. IEEE Trans. Nanotechnol. 19, 553–564 (2020)
Kiani, F., Yin, J., Wang, Z., Yang, J.J., Xia, Q.: A fully hardware-based memristive multilayer neural network. Sci. Adv. 7(48), eabj4801/1-8 (2021)
Sahay, S., Bavandpour, M., Mahmoodi, M.R., Strukov, D.: Energy-efficient moderate precision time-domain mixed-signal vector-by-matrix multiplier exploiting 1T–1R arrays. IEEE J. Exploratory Solid-State Comput. 6, 18–26 (2020)
Velasquez, A., et al.: Parallel Boolean matrix multiplication in linear time using rectifying memristors. In: ISCAS (2016)
Shafiee, A., et al.: ISAAC: a convolutional neural network accelerator with in-situ analog arithmetic in crossbars. ISCAS 44(3), 14–26 (2016)
Hamdioui, S., et al.: Applications of computation-in-memory architectures based on memristive devices. In: DATE (2019)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
Sze, V., Chen, Y.H., Emer, J., Suleiman, A., Zhang, Z.: Hardware for machine learning: challenges and opportunities. In: 2018 IEEE Custom Integrated Circuits Conference (CICC), pp. 1–8 (2018)
Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag, Berlin (2006)
Zahedi, M., Mayahinia, M., Lebdeh, M.A., Wong, S., Hamdioui, S.: Efficient organization of digital periphery to support integer datatype for memristor-based CIM. In: 2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 216–221 (2020)
Feinberg, B., Vengalam, U.K.R., Whitehair, N., Wang, S., Ipek, E.: Enabling scientific computing on memristive accelerators. In: 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA), pp. 367–382 (2018)
Amirsoleimani, A., et al.: In-memory vector-matrix multiplication in monolithic complementary metal-oxide-semiconductor-memristor integrated circuits: design choices, challenges, and perspectives. Adv. Intell. Syst. 2, 2000115 (2020)
Shafiee, A., et al.: ISAAC: a convolutional neural network accelerator with in-situ analog arithmetic in crossbars. In: 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), pp. 14–26 (2016)
Li, C., et al.: CMOS-integrated nanoscale memristive crossbars for CNN and optimization acceleration. In: 2020 IEEE International Memory Workshop (IMW), pp. 1–4 (2020)
Bengel, C., et al.: Reliability aspects of binary vector-matrix-multiplications using ReRAM devices. Neuromorphic Comput. Eng. 2(3), 034001 (2022)
Le, B.Q., et al.: Radar: a fast and energy-efficient programming technique for multiple bits-per-cell RRAM arrays. IEEE Trans. Electron Devices 68(9), 4397–4403 (2021)
Milo, V., et al.: Accurate program/verify schemes of resistive switching memory (RRAM) for in-memory neural network circuits. IEEE Trans. Electron Devices 68, 3832–3837 (2021)
Perez, E., Mahadevaiah, M.K., Quesada, E.P., Wenger, C.: Variability and energy consumption tradeoffs in multilevel programming of RRAM arrays. IEEE Trans. Electron Devices 68, 2693–2698 (2021)
Schnieders, K., et al.: Effect of electron conduction on the read noise characteristics in ReRAM devices. APL Mater. 10(10), 101114 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bengel, C., Gebregiorgis, A., Menzel, S., Waser, R., Gaydadjiev, G., Hamdioui, S. (2023). Devices and Architectures for Efficient Computing In-Memory (CIM) Design. In: Silvano, C., Pilato, C., Reichenbach, M. (eds) Embedded Computer Systems: Architectures, Modeling, and Simulation. SAMOS 2023. Lecture Notes in Computer Science, vol 14385. Springer, Cham. https://doi.org/10.1007/978-3-031-46077-7_29
Download citation
DOI: https://doi.org/10.1007/978-3-031-46077-7_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-46076-0
Online ISBN: 978-3-031-46077-7
eBook Packages: Computer ScienceComputer Science (R0)