Devices and Architectures for Efficient Computing In-Memory (CIM) Design | SpringerLink
Skip to main content

Devices and Architectures for Efficient Computing In-Memory (CIM) Design

  • Conference paper
  • First Online:
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14385))

Included in the following conference series:

  • 933 Accesses

Abstract

Smart computing has demonstrated huge potential for various application sectors such as personalized healthcare and smart robotics. Smart computing aims bringing computing close to the source where the data is generated or stored. Memristor-based Computation-In-Memory (CIM) has the potential to realize such smart computing for data and computation intensive applications. This paper presents an overview and design present of CIM, covering from the architecture and circuit level down to the device level. On the circuit and device level, accelerators for machine learning will be presented and discussed, focusing on variability and reliability effects. We will discuss these aspects for Redox-based Resistive Random Access Memories (ReRAM) based on the Valence Change Mechanism (VCM) by employing the compact model JART VCM v1b.

This work was funded in part by EU’s Horizon Europe research and innovation programme under grant agreement No. 101070374, in part by the Deutsche Forschungsgemeinschaft (SFB 917), and in part by the Federal Ministry of Education and Research (BMBF, Germany) in the project NEUROTEC II (project numbers 16ME0398K and 16ME0399).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Patterson, D.A.: “Future of computer architecture,’’ in Berkeley EECS Annual Research Symposium (BEARS). College of Engineering, UC Berkeley, US (2006)

    Google Scholar 

  2. Hamdioui, S., et al.: Memristor for computing: myth or reality?. In: DATE (2017)

    Google Scholar 

  3. Gebregiorgis, A., et al.: Tutorial on memristor-based computing for smart edge applications. Memories-Mater. Devices Circ. Syst. 4, 100025 (2023)

    Article  Google Scholar 

  4. Diware, S., et al.: Accurate and energy-efficient bit-slicing for RRAM-based neural networks. TETCI 7(1), 164–177 (2022)

    Google Scholar 

  5. Gebregiorgis, A., et al.: A survey on memory-centric computer architectures. JETC 18(4), 1–50 (2022)

    Article  Google Scholar 

  6. Singh, A., et al.: Low-power memristor-based computing for edge-AI applications. In: ISCAS (2021)

    Google Scholar 

  7. Zidan, M.A., Strachan, J.P., Lu, W.D.: The future of electronics based on memristive systems. Nat. Electron. 1, 22–29 (2018)

    Article  Google Scholar 

  8. Shalf, J.: The future of computing beyond Moore’s Law. Phil. Trans. R. Soc. A 378, 20190061 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wuttig, M., Yamada, N.: Phase change materials for rewriteable data storage. Nat. Mater. 6, 824 (2007)

    Article  Google Scholar 

  10. Apalkov, D., Dieny, B., Slaughter, J.M.: Magnetoresistive random access memory. Proc. IEEE 104, 1796–1830 (2016)

    Article  Google Scholar 

  11. Dittmann, R., Menzel, S., Waser, R.: Nanoionic memristive phenomena in metal oxides: the valence change mechanism. Adv. Phys. 70(2), 155–349 (2022)

    Article  Google Scholar 

  12. Waser, R., Dittmann, R., Staikov, G., Szot, K.: Redox-based resistive switching memories - nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21(25–26), 2632–2663 (2009)

    Article  Google Scholar 

  13. Yu, J., et al.: The power of computation-in-memory based on memristive devices. In: ASP-DAC (2020)

    Google Scholar 

  14. Kanerva, P.: Hyperdimensional computing: an introduction to computing in distributed representation with high-dimensional random vectors. Cogn. Comput. 1, 139–159 (2009)

    Article  Google Scholar 

  15. Yang, J.J., et al.: Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3(7), 429–433 (2008)

    Article  Google Scholar 

  16. Hardtdegen, A., Torre, C.L., Cüppers, F., Menzel, S., Waser, R., Hoffmann-Eifert, S.: Improved switching stability and the effect of an internal series resistor in HfO\(_{2}\)/TiO\(_{x}\) bilayer ReRAM cells. IEEE Trans. Electron Devices 65(8), 3229–3236 (2018)

    Article  Google Scholar 

  17. Wiefels, S., von Witzleben, M., Hüttemann, M., Böttger, U., Waser, R., Menzel, S.: Impact of the ohmic electrode on the endurance of oxide based resistive switching memory. IEEE Trans. Electron Devices 68(3), 1024–1030 (2021)

    Article  Google Scholar 

  18. Rieck, J.L., Hensling, F.V., Dittmann, R.: Trade-off between variability and retention of memristive epitaxial SrTiO\(_3\) devices. APL Mater. 9(2), 21110/1-7 (2021)

    Google Scholar 

  19. Kopperberg, N., Wiefels, S., Liberda, S., Waser, R., Menzel, S.: A consistent model for short-term instability and long-term retention in filamentary oxide-based memristive devices. ACS Appl. Mater. Interfaces. 13(48), 58066–58075 (2021)

    Article  Google Scholar 

  20. Kim, T., et al.: Spiking neural network (snn) with memristor synapses having non-linear weight update. Front. Comput. Neurosci. 15, 646125 (2021)

    Article  Google Scholar 

  21. Quesada, E.P., et al.: Experimental assessment of multilevel RRAM-based vector-matrix multiplication operations for in-memory computing. IEEE Trans. Electron Devices 70, 2009–2014 (2023)

    Article  Google Scholar 

  22. Bengel, C., Dixius, L., Waser, R., Wouters, D.J., Menzel, S.: Bit slicing approaches for variability aware ReRAM CIM macros. IT - Inf. Technol. 65, 3–12 (2023)

    Google Scholar 

  23. Wiefels, S.; Reliability aspects in resistively switching valence change memory cells. PhD thesis (2021)

    Google Scholar 

  24. Wiefels, S., Bengel, C., Kopperberg, N., Zhang, K., Waser, R., Menzel, S.: HRS instability in oxide based bipolar resistive switching cells. IEEE Trans. Electron Devices 67(10), 4208–4215 (2020)

    Article  Google Scholar 

  25. Puglisi, F.M., Zagni, N., Larcher, L., Pavan, P.: Random telegraph noise in resistive random access memories: compact modeling and advanced circuit design. IEEE Trans. Electron Devices 65(7), 2964–2972 (2018)

    Article  Google Scholar 

  26. Cüppers, F., et al.: Exploiting the switching dynamics of HfO\(_{2}\)-based ReRAM devices for reliable analog memristive behavior. APL Mater 7(9), 91105/1-9 (2019)

    Google Scholar 

  27. Bengel, C., et al.: Variability-aware modeling of filamentary oxide based bipolar resistive switching cells using SPICE level compact models. IEEE Trans. Circ. Syst. I: Regul. Pap. (TCAS-1) 67(12), 4618–4630 (2020)

    Google Scholar 

  28. Bengel, C., Siemon, A., Rana, V., Menzel, S.: Implementation of multinary Lukasiewicz logic using memristive devices. In: 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea, 22–28 May 2021. IEEE (2021)

    Google Scholar 

  29. Bayat, F.M., Prezioso, M., Chakrabarti, B., Nili, H., Kataeva, I., Strukov, D.: Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits. Nat. Commun. 9(1), 2331 (2018)

    Article  Google Scholar 

  30. Bae, W., Yoon, K.J.: Comprehensive read margin and BER analysis of one selector-one memristor crossbar array considering thermal noise of memristor with noise-aware device model. IEEE Trans. Nanotechnol. 19, 553–564 (2020)

    Article  Google Scholar 

  31. Kiani, F., Yin, J., Wang, Z., Yang, J.J., Xia, Q.: A fully hardware-based memristive multilayer neural network. Sci. Adv. 7(48), eabj4801/1-8 (2021)

    Google Scholar 

  32. Sahay, S., Bavandpour, M., Mahmoodi, M.R., Strukov, D.: Energy-efficient moderate precision time-domain mixed-signal vector-by-matrix multiplier exploiting 1T–1R arrays. IEEE J. Exploratory Solid-State Comput. 6, 18–26 (2020)

    Google Scholar 

  33. Velasquez, A., et al.: Parallel Boolean matrix multiplication in linear time using rectifying memristors. In: ISCAS (2016)

    Google Scholar 

  34. Shafiee, A., et al.: ISAAC: a convolutional neural network accelerator with in-situ analog arithmetic in crossbars. ISCAS 44(3), 14–26 (2016)

    Google Scholar 

  35. Hamdioui, S., et al.: Applications of computation-in-memory architectures based on memristive devices. In: DATE (2019)

    Google Scholar 

  36. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  37. Sze, V., Chen, Y.H., Emer, J., Suleiman, A., Zhang, Z.: Hardware for machine learning: challenges and opportunities. In: 2018 IEEE Custom Integrated Circuits Conference (CICC), pp. 1–8 (2018)

    Google Scholar 

  38. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag, Berlin (2006)

    MATH  Google Scholar 

  39. Zahedi, M., Mayahinia, M., Lebdeh, M.A., Wong, S., Hamdioui, S.: Efficient organization of digital periphery to support integer datatype for memristor-based CIM. In: 2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 216–221 (2020)

    Google Scholar 

  40. Feinberg, B., Vengalam, U.K.R., Whitehair, N., Wang, S., Ipek, E.: Enabling scientific computing on memristive accelerators. In: 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA), pp. 367–382 (2018)

    Google Scholar 

  41. Amirsoleimani, A., et al.: In-memory vector-matrix multiplication in monolithic complementary metal-oxide-semiconductor-memristor integrated circuits: design choices, challenges, and perspectives. Adv. Intell. Syst. 2, 2000115 (2020)

    Article  Google Scholar 

  42. Shafiee, A., et al.: ISAAC: a convolutional neural network accelerator with in-situ analog arithmetic in crossbars. In: 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), pp. 14–26 (2016)

    Google Scholar 

  43. Li, C., et al.: CMOS-integrated nanoscale memristive crossbars for CNN and optimization acceleration. In: 2020 IEEE International Memory Workshop (IMW), pp. 1–4 (2020)

    Google Scholar 

  44. Bengel, C., et al.: Reliability aspects of binary vector-matrix-multiplications using ReRAM devices. Neuromorphic Comput. Eng. 2(3), 034001 (2022)

    Article  Google Scholar 

  45. Le, B.Q., et al.: Radar: a fast and energy-efficient programming technique for multiple bits-per-cell RRAM arrays. IEEE Trans. Electron Devices 68(9), 4397–4403 (2021)

    Article  Google Scholar 

  46. Milo, V., et al.: Accurate program/verify schemes of resistive switching memory (RRAM) for in-memory neural network circuits. IEEE Trans. Electron Devices 68, 3832–3837 (2021)

    Article  Google Scholar 

  47. Perez, E., Mahadevaiah, M.K., Quesada, E.P., Wenger, C.: Variability and energy consumption tradeoffs in multilevel programming of RRAM arrays. IEEE Trans. Electron Devices 68, 2693–2698 (2021)

    Article  Google Scholar 

  48. Schnieders, K., et al.: Effect of electron conduction on the read noise characteristics in ReRAM devices. APL Mater. 10(10), 101114 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anteneh Gebregiorgis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bengel, C., Gebregiorgis, A., Menzel, S., Waser, R., Gaydadjiev, G., Hamdioui, S. (2023). Devices and Architectures for Efficient Computing In-Memory (CIM) Design. In: Silvano, C., Pilato, C., Reichenbach, M. (eds) Embedded Computer Systems: Architectures, Modeling, and Simulation. SAMOS 2023. Lecture Notes in Computer Science, vol 14385. Springer, Cham. https://doi.org/10.1007/978-3-031-46077-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46077-7_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46076-0

  • Online ISBN: 978-3-031-46077-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics