Exploring the Transfer Learning Capabilities of CLIP in Domain Generalization for Diabetic Retinopathy | SpringerLink
Skip to main content

Exploring the Transfer Learning Capabilities of CLIP in Domain Generalization for Diabetic Retinopathy

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2023)

Abstract

Diabetic Retinopathy (DR), a leading cause of vision impairment, requires early detection and treatment. Developing robust AI models for DR classification holds substantial potential, but a key challenge is ensuring their generalization in unfamiliar domains with varying data distributions. To address this, our paper investigates cross-domain generalization, also known as domain generalization (DG), within the context of DR classification. DG, a challenging problem in the medical domain, is complicated by the difficulty of gathering labeled data across different domains, such as patient demographics and disease stages. Some recent studies have shown the effectiveness of using CLIP to handle the DG problem in natural images. In this study, we investigate CLIP’s transfer learning capabilities and its potential for cross-domain generalization in diabetic retinopathy (DR) classification. We carry out comprehensive experiments to assess the efficacy and potential of CLIP in addressing DG for DR classification. Further, we introduce a multi-modal fine-tuning strategy named Context Optimization with Learnable Visual Tokens (CoOpLVT), which enhances context optimization by conditioning on visual features. Our findings demonstrate that the proposed method increases the F1-score by 1.8% over the baseline, thus underlining its promise for effective DG in DR classification. Our code is publicly available at https://github.com/Sanoojan/CLIP-DRDG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8464
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. APTOS: APTOS 2019 Blindness Detection. https://www.kaggle.com/competitions/aptos2019-blindness-detection/data (2019)

  2. Asiri, N., Hussain, M., Al Adel, F., Alzaidi, N.: Deep learning based computer-aided diagnosis systems for diabetic retinopathy: a survey. Artif. Intell. Med. 99 (2019). https://doi.org/10.1016/j.artmed.2019.07.009

  3. Atwany, M., Yaqub, M.: DRGen: domain generalization in diabetic retinopathy classification. In: MICCAI 2022: Proceedings, Part II. pp. 635–644. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16434-7_61

  4. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F.C., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79, 151–175 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben-David, S., Blitzer, J., Crammer, K., Pereira, F.: Analysis of representations for domain adaptation. In: Advances in Neural Information Processing Systems 19 (2006)

    Google Scholar 

  6. Bodapati, J.D., Shaik, N.S., Naralasetti, V.: Composite deep neural network with gated-attention mechanism for diabetic retinopathy severity classification. J. Ambient. Intell. Humaniz. Comput. 12(10), 9825–9839 (2021)

    Article  Google Scholar 

  7. Bose, S., Fini, E., Jha, A., Singha, M., Banerjee, B., Ricci, E.: StyLIP: multi-scale style-conditioned prompt learning for clip-based domain generalization (2023)

    Google Scholar 

  8. Cha, J., et al.: SWAD: domain generalization by seeking flat minima. In: NeurIPS 34 (2021)

    Google Scholar 

  9. Decencière, E., et al.: Feedback on a publicly distributed image database: the Messidor database. Image Anal. Stereol. 33(3), 231–234 (2014). https://doi.org/10.5566/ias.1155

    Article  MATH  Google Scholar 

  10. Dosovitskiy, A., et al.: An image is worth 16\(\,\times \,\)16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  11. Dou, Q., de Castro, D.C., Kamnitsas, K., Glocker, B.: Domain generalization via model-agnostic learning of semantic features. In: NeurIPS, pp. 6450–6461 (2019)

    Google Scholar 

  12. Eslami, S., de Melo, G., Meinel, C.: Does clip benefit visual question answering in the medical domain as much as it does in the general domain? (2021)

    Google Scholar 

  13. Ghifary, M., Bastiaan Kleijn, W., Zhang, M., Balduzzi, D.: Domain generalization for object recognition with multi-task autoencoders. In: ICCV (2015)

    Google Scholar 

  14. Gulrajani, I., Lopez-Paz, D.: In search of lost domain generalization. ArXiv:2007.01434 (2021)

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  16. Huang, K., Altosaar, J., Ranganath, R.: ClinicalBERT: modeling clinical notes and predicting hospital readmission (2020)

    Google Scholar 

  17. Huang, S.C., Shen, L., Lungren, M.P., Yeung, S.: Gloria: a multimodal global-local representation learning framework for label-efficient medical image recognition. In: ICCV, pp. 3942–3951 (2021)

    Google Scholar 

  18. Kaggle: diabetic retinopathy detection. https://www.kaggle.com/c/diabetic-retinopathy-detection. Accessed 28 Jan 2023

  19. Kempen, J.H., et al.: The prevalence of diabetic retinopathy among adults in the united states. Archives of Ophthalmology (Chicago, Ill.: 1960) (2004)

    Google Scholar 

  20. Khan, M.H., Zaidi, T., Khan, S., Khan, F.S.: Mode-guided feature augmentation for domain generalization. In: Proceedings of British Machine Vision Conference (2021)

    Google Scholar 

  21. Kim, D., Yoo, Y., Park, S., Kim, J., Lee, J.: SelfReg: self-supervised contrastive regularization for domain generalization. In: ICCV, pp. 9619–9628 (2021)

    Google Scholar 

  22. Kumar, A., Raghunathan, A., Jones, R.M., Ma, T., Liang, P.: Fine-tuning can distort pretrained features and underperform out-of-distribution. In: ICLR (2022)

    Google Scholar 

  23. Lee, J., et al.: BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 36(4), 1234–1240 (2019)

    Article  Google Scholar 

  24. Li, C., et al.: Domain generalization on medical imaging classification using episodic training with task augmentation. Comput. Biol. Med. 141, 105144 (2022)

    Article  Google Scholar 

  25. Li, H., Wang, Y., Wan, R., Wang, S., Li, T.Q., Kot, A.: Domain generalization for medical imaging classification with linear-dependency regularization. In: NeurIPS (2020)

    Google Scholar 

  26. Liu, J., et al.: Clip-driven universal model for organ segmentation and tumor detection (2023)

    Google Scholar 

  27. Motiian, S., Piccirilli, M., Adjeroh, D.A., Doretto, G.: Unified deep supervised domain adaptation and generalization. In: ICCV, pp. 5715–5725 (2017)

    Google Scholar 

  28. Muandet, K., Balduzzi, D., Schölkopf, B.: Domain generalization via invariant feature representation. In: ICML (2013)

    Google Scholar 

  29. Niu, H., Li, H., Zhao, F., Li, B.: Domain-unified prompt representations for source-free domain generalization (2023)

    Google Scholar 

  30. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  31. Radford, A., et al.: Language models are unsupervised multitask learners. OpenAI blog 1(8), 9 (2019)

    Google Scholar 

  32. Rame, A., Dancette, C., Cord, M.: Fishr: Invariant gradient variances for out-of-distribution generalization. In: ICML. PMLR (2022)

    Google Scholar 

  33. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. In: ICML (2021)

    Google Scholar 

  34. Vapnik, V.: The Nature of Statistical Learning Theory. Springer science & business media (1999). https://doi.org/10.1007/978-1-4757-3264-1

  35. Wang, Z., Wu, Z., Agarwal, D., Sun, J.: MedCLIP: contrastive learning from unpaired medical images and text (2022)

    Google Scholar 

  36. Wortsman, M., et al.: Robust fine-tuning of zero-shot models. CoRR abs/2109.01903 (2021). https://arxiv.org/abs/2109.01903

  37. Wu, Z., et al.: Coarse-to-fine classification for diabetic retinopathy grading using convolutional neural network. In: Artificial Intelligence in Medicine 108 (2020)

    Google Scholar 

  38. Zhang, X., Gu, S.S., Matsuo, Y., Iwasawa, Y.: Domain prompt learning for efficiently adapting clip to unseen domains (2022)

    Google Scholar 

  39. Zhang, Y., Jiang, H., Miura, Y., Manning, C.D., Langlotz, C.P.: Contrastive learning of medical visual representations from paired images and text (2022)

    Google Scholar 

  40. Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Conditional prompt learning for vision-language models. In: CVPR, pp. 16816–16825 (2022)

    Google Scholar 

  41. Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Learning to prompt for vision-language models. Int. J. Comput. Vis. 130(9), 2337–2348 (2022)

    Google Scholar 

  42. Zhou, K., Yang, Y., Hospedales, T., Xiang, T.: Learning to generate novel domains for domain generalization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 561–578. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_33

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanoojan Baliah .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 8614 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baliah, S., Maani, F.A., Sanjeev, S., Khan, M.H. (2024). Exploring the Transfer Learning Capabilities of CLIP in Domain Generalization for Diabetic Retinopathy. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14348. Springer, Cham. https://doi.org/10.1007/978-3-031-45673-2_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45673-2_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45672-5

  • Online ISBN: 978-3-031-45673-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics