MagNET: Modality-Agnostic Network for Brain Tumor Segmentation and Characterization with Missing Modalities | SpringerLink
Skip to main content

MagNET: Modality-Agnostic Network for Brain Tumor Segmentation and Characterization with Missing Modalities

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14348))

Included in the following conference series:

  • 1290 Accesses

Abstract

Multiple modalities provide complementary information in medical image segmentation tasks. However, in practice, not all modalities are available during inference. Missing modalities may affect the performance of segmentation and other downstream tasks like genomic biomarker prediction. Previous approaches either attempt a naive fusion of multi-modal features or synthesize missing modalities in the image or feature space. We propose an end-to-end modality-agnostic segmentation network (MagNET) to handle heterogeneous modality combinations, which is also utilized for radiogenomics classification. An attention-based fusion module is designed to generate a modality-agnostic tumor-aware representation. We design an adversarial training strategy to improve the quality of the representation. A missing-modality detector is used as a discriminator to push the encoded feature representation to mimic a full-modality setting. In addition, we introduce a loss function to maximize inter-modal correlations; this helps generate the modality-agnostic representation. MagNET significantly outperforms state-of-the-art segmentation and methylation status prediction methods under missing modality scenarios, as demonstrated on brain tumor datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8464
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 1–13 (2017)

    Article  Google Scholar 

  2. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv preprint arXiv:1811.02629 (2018)

  3. Bauer, S., Wiest, R., Nolte, L.P., Reyes, M.: A survey of MRI-based medical image analysis for brain tumor studies. Phys. Med. Biol. 58(13), R97 (2013)

    Article  Google Scholar 

  4. Chartsias, A., Joyce, T., Giuffrida, M.V., Tsaftaris, S.A.: Multimodal MR synthesis via modality-invariant latent representation. IEEE TMI 37(3), 803–814 (2017)

    Google Scholar 

  5. Chen, S., Ding, C., Liu, M.: Dual-force convolutional neural networks for accurate brain tumor segmentation. Pattern Recogn. 88, 90–100 (2019)

    Article  Google Scholar 

  6. Dorent, R., Joutard, S., Modat, M., Ourselin, S., Vercauteren, T.: Hetero-modal variational encoder-decoder for joint modality completion and segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 74–82. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_9

    Chapter  Google Scholar 

  7. Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  8. Havaei, M., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)

    Article  Google Scholar 

  9. Havaei, M., Guizard, N., Chapados, N., Bengio, Y.: HeMIS: hetero-modal image segmentation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 469–477. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_54

    Chapter  Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  11. Hu, M., et al.: Knowledge distillation from multi-modal to mono-modal segmentation networks. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 772–781. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_75

    Chapter  Google Scholar 

  12. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML, pp. 448–456. PMLR (2015)

    Google Scholar 

  13. Islam, M., Wijethilake, N., Ren, H.: Glioblastoma multiforme prognosis: MRI missing modality generation, segmentation and radiogenomic survival prediction. Comput. Med. Imaging Graph. 91, 101906 (2021)

    Article  Google Scholar 

  14. Konwer, A., et al.: Predicting COVID-19 lung infiltrate progression on chest radiographs using spatio-temporal LSTM based encoder-decoder network. In: MIDL, pp. 384–398. PMLR (2021)

    Google Scholar 

  15. Konwer, A., et al.: Attention-based multi-scale gated recurrent encoder with novel correlation loss for COVID-19 progression prediction. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 824–833. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_79

    Chapter  Google Scholar 

  16. Konwer, A., Hu, X., Xu, X., Bae, J., Chen, C., Prasanna, P.: Enhancing modality-agnostic representations via meta-learning for brain tumor segmentation. arXiv preprint arXiv:2302.04308 (2023)

  17. Konwer, A., Xu, X., Bae, J., Chen, C., Prasanna, P.: Temporal context matters: enhancing single image prediction with disease progression representations. In: CVPR, pp. 18824–18835 (2022)

    Google Scholar 

  18. Lau, K., Adler, J., Sjölund, J.: A unified representation network for segmentation with missing modalities. arXiv preprint arXiv:1908.06683 (2019)

  19. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE TMI 34(10), 1993–2024 (2014)

    Google Scholar 

  20. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28

    Chapter  Google Scholar 

  21. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML (2010)

    Google Scholar 

  22. Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  23. Shen, Y., Gao, M.: Brain tumor segmentation on MRI with missing modalities. In: Chung, A., Gee, J., Yushkevich, P., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 417–428. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_32

    Chapter  Google Scholar 

  24. Singh, G., et al.: Radiomics and radiogenomics in gliomas: a contemporary update. Br. J. Cancer 125(5), 641–657 (2021)

    Article  Google Scholar 

  25. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: ICML, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  26. Wang, W., Chen, C., Ding, M., Yu, H., Zha, S., Li, J.: TransBTS: multimodal brain tumor segmentation using transformer. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 109–119. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_11

    Chapter  Google Scholar 

  27. Wang, Y., et al.: ACN: adversarial co-training network for brain tumor segmentation with missing modalities. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12907, pp. 410–420. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_39

    Chapter  Google Scholar 

  28. Yu, Z., Zhai, Y., Han, X., Peng, T., Zhang, X.-Y.: MouseGAN: GAN-Based multiple MRI modalities synthesis and segmentation for mouse brain structures. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 442–450. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_42

    Chapter  Google Scholar 

  29. Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow twins: self-supervised learning via redundancy reduction. In: ICML, pp. 12310–12320. PMLR (2021)

    Google Scholar 

  30. Zhou, C., Ding, C., Wang, X., Lu, Z., Tao, D.: One-pass multi-task networks with cross-task guided attention for brain tumor segmentation. IEEE TIP 29, 4516–4529 (2020)

    MATH  Google Scholar 

  31. Zhou, T., Canu, S., Vera, P., Ruan, S.: Feature-enhanced generation and multi-modality fusion based deep neural network for brain tumor segmentation with missing MR modalities. Neurocomputing 466, 102–112 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aishik Konwer .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1043 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Konwer, A., Chen, C., Prasanna, P. (2024). MagNET: Modality-Agnostic Network for Brain Tumor Segmentation and Characterization with Missing Modalities. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14348. Springer, Cham. https://doi.org/10.1007/978-3-031-45673-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45673-2_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45672-5

  • Online ISBN: 978-3-031-45673-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics