Abstract
Multiple modalities provide complementary information in medical image segmentation tasks. However, in practice, not all modalities are available during inference. Missing modalities may affect the performance of segmentation and other downstream tasks like genomic biomarker prediction. Previous approaches either attempt a naive fusion of multi-modal features or synthesize missing modalities in the image or feature space. We propose an end-to-end modality-agnostic segmentation network (MagNET) to handle heterogeneous modality combinations, which is also utilized for radiogenomics classification. An attention-based fusion module is designed to generate a modality-agnostic tumor-aware representation. We design an adversarial training strategy to improve the quality of the representation. A missing-modality detector is used as a discriminator to push the encoded feature representation to mimic a full-modality setting. In addition, we introduce a loss function to maximize inter-modal correlations; this helps generate the modality-agnostic representation. MagNET significantly outperforms state-of-the-art segmentation and methylation status prediction methods under missing modality scenarios, as demonstrated on brain tumor datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 1–13 (2017)
Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv preprint arXiv:1811.02629 (2018)
Bauer, S., Wiest, R., Nolte, L.P., Reyes, M.: A survey of MRI-based medical image analysis for brain tumor studies. Phys. Med. Biol. 58(13), R97 (2013)
Chartsias, A., Joyce, T., Giuffrida, M.V., Tsaftaris, S.A.: Multimodal MR synthesis via modality-invariant latent representation. IEEE TMI 37(3), 803–814 (2017)
Chen, S., Ding, C., Liu, M.: Dual-force convolutional neural networks for accurate brain tumor segmentation. Pattern Recogn. 88, 90–100 (2019)
Dorent, R., Joutard, S., Modat, M., Ourselin, S., Vercauteren, T.: Hetero-modal variational encoder-decoder for joint modality completion and segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 74–82. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_9
Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Havaei, M., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)
Havaei, M., Guizard, N., Chapados, N., Bengio, Y.: HeMIS: hetero-modal image segmentation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 469–477. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_54
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
Hu, M., et al.: Knowledge distillation from multi-modal to mono-modal segmentation networks. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 772–781. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_75
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML, pp. 448–456. PMLR (2015)
Islam, M., Wijethilake, N., Ren, H.: Glioblastoma multiforme prognosis: MRI missing modality generation, segmentation and radiogenomic survival prediction. Comput. Med. Imaging Graph. 91, 101906 (2021)
Konwer, A., et al.: Predicting COVID-19 lung infiltrate progression on chest radiographs using spatio-temporal LSTM based encoder-decoder network. In: MIDL, pp. 384–398. PMLR (2021)
Konwer, A., et al.: Attention-based multi-scale gated recurrent encoder with novel correlation loss for COVID-19 progression prediction. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 824–833. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_79
Konwer, A., Hu, X., Xu, X., Bae, J., Chen, C., Prasanna, P.: Enhancing modality-agnostic representations via meta-learning for brain tumor segmentation. arXiv preprint arXiv:2302.04308 (2023)
Konwer, A., Xu, X., Bae, J., Chen, C., Prasanna, P.: Temporal context matters: enhancing single image prediction with disease progression representations. In: CVPR, pp. 18824–18835 (2022)
Lau, K., Adler, J., Sjölund, J.: A unified representation network for segmentation with missing modalities. arXiv preprint arXiv:1908.06683 (2019)
Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE TMI 34(10), 1993–2024 (2014)
Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28
Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML (2010)
Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
Shen, Y., Gao, M.: Brain tumor segmentation on MRI with missing modalities. In: Chung, A., Gee, J., Yushkevich, P., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 417–428. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_32
Singh, G., et al.: Radiomics and radiogenomics in gliomas: a contemporary update. Br. J. Cancer 125(5), 641–657 (2021)
Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: ICML, pp. 6105–6114. PMLR (2019)
Wang, W., Chen, C., Ding, M., Yu, H., Zha, S., Li, J.: TransBTS: multimodal brain tumor segmentation using transformer. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 109–119. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_11
Wang, Y., et al.: ACN: adversarial co-training network for brain tumor segmentation with missing modalities. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12907, pp. 410–420. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_39
Yu, Z., Zhai, Y., Han, X., Peng, T., Zhang, X.-Y.: MouseGAN: GAN-Based multiple MRI modalities synthesis and segmentation for mouse brain structures. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 442–450. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_42
Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow twins: self-supervised learning via redundancy reduction. In: ICML, pp. 12310–12320. PMLR (2021)
Zhou, C., Ding, C., Wang, X., Lu, Z., Tao, D.: One-pass multi-task networks with cross-task guided attention for brain tumor segmentation. IEEE TIP 29, 4516–4529 (2020)
Zhou, T., Canu, S., Vera, P., Ruan, S.: Feature-enhanced generation and multi-modality fusion based deep neural network for brain tumor segmentation with missing MR modalities. Neurocomputing 466, 102–112 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Konwer, A., Chen, C., Prasanna, P. (2024). MagNET: Modality-Agnostic Network for Brain Tumor Segmentation and Characterization with Missing Modalities. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14348. Springer, Cham. https://doi.org/10.1007/978-3-031-45673-2_36
Download citation
DOI: https://doi.org/10.1007/978-3-031-45673-2_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-45672-5
Online ISBN: 978-3-031-45673-2
eBook Packages: Computer ScienceComputer Science (R0)