Abstract
Deep learning has shown significant progress in medical image analysis tasks such as semantic segmentation. However, deep learning models typically require large amounts of annotated data to achieve high accuracy; often a limiting factor in medical applications where labeled data is scarce. Few-shot domain adaptation (FSDA) is one approach to address this problem. It adapts a model trained on a source domain to a target domain which includes a few labeled data. In this paper, we present an FSDA method adapting pre-trained models to the target domain via domain-mixed data in the self-training framework. Our network follows the traditional encoder-decoder structure, which consists of a Transformer encoder, a DeeplabV3+ decoder for segmentation tasks and an auxiliary decoder for boundary-supervised learning. Our approach fine-tunes the source-domain pre-trained model with a few labeled examples from the target domain and by including unlabeled target domain data as well. We evaluate our method on two commonly used publicly available datasets for optic disc/cup and polyp segmentation, and show that it outperforms other state-of-the-art FSDA methods with only 5 labeled examples in the target domain. Overall, our FSDA method shows promising results and has potential to be applied to other medical imaging tasks with limited labeled data in the target domain.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Bernal, J., et al.: Comparative validation of polyp detection methods in video colonoscopy: results from the MICCAI 2015 endoscopic vision challenge. IEEE Trans. Med. Imaging 36(6), 1231–1249 (2017)
Chen, C., Liu, Q., Jin, Y., Dou, Q., Heng, P.-A.: Source-free domain adaptive fundus image segmentation with denoised pseudo-labeling. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 225–235. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_22
Chen, L.C., et al.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: ECCV, pp. 801–818 (2018)
Cho, H., Nishimura, K., Watanabe, K., Bise, R.: Cell detection in domain shift problem using pseudo-cell-position heatmap. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 384–394. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_37
Cordonnier, J.B., Loukas, A., Jaggi, M.: On the relationship between self-attention and convolutional layers. arXiv preprint arXiv:1911.03584 (2019)
Dong, N., Kampffmeyer, M., Liang, X., Wang, Z., Dai, W., Xing, E.: Unsupervised domain adaptation for automatic estimation of cardiothoracic ratio. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 544–552. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_61
Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Fan, D.-P., et al.: PraNet: parallel reverse attention network for polyp segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 263–273. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_26
Feng, W., et al.: Unsupervised domain adaptive fundus image segmentation with category-level regularization. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part II, pp. 497–506. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16434-7_48
Fumero, F., Alayón, S., Sanchez, J.L.: Rim-one: an open retinal image database for optic nerve evaluation. In: CBMS, pp. 1–6. IEEE (2011)
Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: International Conference on Machine Learning, pp. 1180–1189. PMLR (2015)
Geirhos, R., et al.: Imagenet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. arXiv preprint arXiv:1811.12231 (2018)
Haq, M.M., Huang, J.: Adversarial domain adaptation for cell segmentation. In: Medical Imaging with Deep Learning, pp. 277–287. PMLR (2020)
Hoyer, L., Dai, D., Van Gool, L.: Daformer: improving network architectures and training strategies for domain-adaptive semantic segmentation. In: CVPR, pp. 9924–9935 (2022)
Hu, M., et al.: Fully test-time adaptation for image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 251–260. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_24
Lee, J., et al.: Confidence score for source-free unsupervised domain adaptation. In: ICML, pp. 12365–12377. PMLR (2022)
Li, K., Wang, S., Yu, L., Heng, P.-A.: Dual-teacher: integrating intra-domain and inter-domain teachers for annotation-efficient cardiac segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 418–427. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_41
Li, S., et al.: Few-shot domain adaptation with polymorphic transformers. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 330–340. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_31
Liang, J., Hu, D., Feng, J.: Do we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation. In: ICML, pp. 6028–6039. PMLR (2020)
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV, pp. 10012–10022 (2021)
Olsson, V., et al.: Classmix: segmentation-based data augmentation for semi-supervised learning. In: WACV, pp. 1369–1378 (2021)
Orlando, J.I., et al.: Refuge challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Med. Image Anal. 59, 101570 (2020)
Pogorelov, K., et al.: Kvasir: a multi-class image dataset for computer aided gastrointestinal disease detection. In: Proceedings of the 8th ACM on Multimedia Systems Conference, pp. 164–169 (2017)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: NeurIPS 30 (2017)
Tranheden, W., et al.: Dacs: domain adaptation via cross-domain mixed sampling. In: WACV, pp. 1379–1389 (2021)
Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7167–7176 (2017)
Varsavsky, T., et al.: Test-time unsupervised domain adaptation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 428–436. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_42
Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: adversarial entropy minimization for domain adaptation in semantic segmentation. In: CVPR, pp. 2517–2526 (2019)
Wang, S., Yu, L., Li, K., Yang, X., Fu, C.-W., Heng, P.-A.: Boundary and entropy-driven adversarial learning for fundus image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 102–110. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_12
Wang, S., Yu, L., Yang, X., Fu, C.W., Heng, P.A.: Patch-based output space adversarial learning for joint optic disc and cup segmentation. IEEE Trans. Med. Imaging 38(11), 2485–2495 (2019)
Wu, S., Chen, C., Xiong, Z., Chen, X., Sun, X.: Uncertainty-aware label rectification for domain adaptive mitochondria segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 191–200. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_18
Xie, E., et al.: Segformer: simple and efficient design for semantic segmentation with transformers. NeurIPS 34, 12077–12090 (2021)
Xu, Z., et al.: Denoising for relaxing: unsupervised domain adaptive fundus image segmentation without source data. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part V, pp. 214–224. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_21
Zhang, P., Zhang, B., Zhang, T., Chen, D., Wang, Y., Wen, F.: Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation. In: CVPR, pp. 12414–12424 (2021)
Zhao, Z., Xu, K., Li, S., Zeng, Z., Guan, C.: MT-UDA: towards unsupervised cross-modality medical image segmentation with limited source labels. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 293–303. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_28
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV, pp. 2223–2232 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, Y., Pagnucco, M., Song, Y. (2024). Self-training with Domain-Mixed Data for Few-Shot Domain Adaptation in Medical Image Segmentation Tasks. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14348. Springer, Cham. https://doi.org/10.1007/978-3-031-45673-2_30
Download citation
DOI: https://doi.org/10.1007/978-3-031-45673-2_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-45672-5
Online ISBN: 978-3-031-45673-2
eBook Packages: Computer ScienceComputer Science (R0)