Self-training with Domain-Mixed Data for Few-Shot Domain Adaptation in Medical Image Segmentation Tasks | SpringerLink
Skip to main content

Self-training with Domain-Mixed Data for Few-Shot Domain Adaptation in Medical Image Segmentation Tasks

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14348))

Included in the following conference series:

Abstract

Deep learning has shown significant progress in medical image analysis tasks such as semantic segmentation. However, deep learning models typically require large amounts of annotated data to achieve high accuracy; often a limiting factor in medical applications where labeled data is scarce. Few-shot domain adaptation (FSDA) is one approach to address this problem. It adapts a model trained on a source domain to a target domain which includes a few labeled data. In this paper, we present an FSDA method adapting pre-trained models to the target domain via domain-mixed data in the self-training framework. Our network follows the traditional encoder-decoder structure, which consists of a Transformer encoder, a DeeplabV3+ decoder for segmentation tasks and an auxiliary decoder for boundary-supervised learning. Our approach fine-tunes the source-domain pre-trained model with a few labeled examples from the target domain and by including unlabeled target domain data as well. We evaluate our method on two commonly used publicly available datasets for optic disc/cup and polyp segmentation, and show that it outperforms other state-of-the-art FSDA methods with only 5 labeled examples in the target domain. Overall, our FSDA method shows promising results and has potential to be applied to other medical imaging tasks with limited labeled data in the target domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8464
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernal, J., et al.: Comparative validation of polyp detection methods in video colonoscopy: results from the MICCAI 2015 endoscopic vision challenge. IEEE Trans. Med. Imaging 36(6), 1231–1249 (2017)

    Google Scholar 

  2. Chen, C., Liu, Q., Jin, Y., Dou, Q., Heng, P.-A.: Source-free domain adaptive fundus image segmentation with denoised pseudo-labeling. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 225–235. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_22

  3. Chen, L.C., et al.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: ECCV, pp. 801–818 (2018)

    Google Scholar 

  4. Cho, H., Nishimura, K., Watanabe, K., Bise, R.: Cell detection in domain shift problem using pseudo-cell-position heatmap. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 384–394. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_37

  5. Cordonnier, J.B., Loukas, A., Jaggi, M.: On the relationship between self-attention and convolutional layers. arXiv preprint arXiv:1911.03584 (2019)

  6. Dong, N., Kampffmeyer, M., Liang, X., Wang, Z., Dai, W., Xing, E.: Unsupervised domain adaptation for automatic estimation of cardiothoracic ratio. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 544–552. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_61

  7. Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  8. Fan, D.-P., et al.: PraNet: parallel reverse attention network for polyp segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 263–273. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_26

  9. Feng, W., et al.: Unsupervised domain adaptive fundus image segmentation with category-level regularization. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part II, pp. 497–506. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16434-7_48

  10. Fumero, F., Alayón, S., Sanchez, J.L.: Rim-one: an open retinal image database for optic nerve evaluation. In: CBMS, pp. 1–6. IEEE (2011)

    Google Scholar 

  11. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: International Conference on Machine Learning, pp. 1180–1189. PMLR (2015)

    Google Scholar 

  12. Geirhos, R., et al.: Imagenet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. arXiv preprint arXiv:1811.12231 (2018)

  13. Haq, M.M., Huang, J.: Adversarial domain adaptation for cell segmentation. In: Medical Imaging with Deep Learning, pp. 277–287. PMLR (2020)

    Google Scholar 

  14. Hoyer, L., Dai, D., Van Gool, L.: Daformer: improving network architectures and training strategies for domain-adaptive semantic segmentation. In: CVPR, pp. 9924–9935 (2022)

    Google Scholar 

  15. Hu, M., et al.: Fully test-time adaptation for image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 251–260. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_24

  16. Lee, J., et al.: Confidence score for source-free unsupervised domain adaptation. In: ICML, pp. 12365–12377. PMLR (2022)

    Google Scholar 

  17. Li, K., Wang, S., Yu, L., Heng, P.-A.: Dual-teacher: integrating intra-domain and inter-domain teachers for annotation-efficient cardiac segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 418–427. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_41

  18. Li, S., et al.: Few-shot domain adaptation with polymorphic transformers. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 330–340. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_31

  19. Liang, J., Hu, D., Feng, J.: Do we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation. In: ICML, pp. 6028–6039. PMLR (2020)

    Google Scholar 

  20. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV, pp. 10012–10022 (2021)

    Google Scholar 

  21. Olsson, V., et al.: Classmix: segmentation-based data augmentation for semi-supervised learning. In: WACV, pp. 1369–1378 (2021)

    Google Scholar 

  22. Orlando, J.I., et al.: Refuge challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Med. Image Anal. 59, 101570 (2020)

    Google Scholar 

  23. Pogorelov, K., et al.: Kvasir: a multi-class image dataset for computer aided gastrointestinal disease detection. In: Proceedings of the 8th ACM on Multimedia Systems Conference, pp. 164–169 (2017)

    Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  25. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: NeurIPS 30 (2017)

    Google Scholar 

  26. Tranheden, W., et al.: Dacs: domain adaptation via cross-domain mixed sampling. In: WACV, pp. 1379–1389 (2021)

    Google Scholar 

  27. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7167–7176 (2017)

    Google Scholar 

  28. Varsavsky, T., et al.: Test-time unsupervised domain adaptation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 428–436. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_42

  29. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: adversarial entropy minimization for domain adaptation in semantic segmentation. In: CVPR, pp. 2517–2526 (2019)

    Google Scholar 

  30. Wang, S., Yu, L., Li, K., Yang, X., Fu, C.-W., Heng, P.-A.: Boundary and entropy-driven adversarial learning for fundus image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 102–110. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_12

  31. Wang, S., Yu, L., Yang, X., Fu, C.W., Heng, P.A.: Patch-based output space adversarial learning for joint optic disc and cup segmentation. IEEE Trans. Med. Imaging 38(11), 2485–2495 (2019)

    Article  Google Scholar 

  32. Wu, S., Chen, C., Xiong, Z., Chen, X., Sun, X.: Uncertainty-aware label rectification for domain adaptive mitochondria segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 191–200. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_18

  33. Xie, E., et al.: Segformer: simple and efficient design for semantic segmentation with transformers. NeurIPS 34, 12077–12090 (2021)

    Google Scholar 

  34. Xu, Z., et al.: Denoising for relaxing: unsupervised domain adaptive fundus image segmentation without source data. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part V, pp. 214–224. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_21

  35. Zhang, P., Zhang, B., Zhang, T., Chen, D., Wang, Y., Wen, F.: Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation. In: CVPR, pp. 12414–12424 (2021)

    Google Scholar 

  36. Zhao, Z., Xu, K., Li, S., Zeng, Z., Guan, C.: MT-UDA: towards unsupervised cross-modality medical image segmentation with limited source labels. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 293–303. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_28

  37. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Song .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 162 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Pagnucco, M., Song, Y. (2024). Self-training with Domain-Mixed Data for Few-Shot Domain Adaptation in Medical Image Segmentation Tasks. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14348. Springer, Cham. https://doi.org/10.1007/978-3-031-45673-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45673-2_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45672-5

  • Online ISBN: 978-3-031-45673-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics