Prostate Segmentation Using Multiparametric and Multiplanar Magnetic Resonance Images | SpringerLink
Skip to main content

Prostate Segmentation Using Multiparametric and Multiplanar Magnetic Resonance Images

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14348))

Included in the following conference series:

  • 1370 Accesses

Abstract

Diseases related to the prostate and distal urethra, such as prostate cancer, benign prostatic hyperplasia and urinary incontinence, may be detected and diagnosed through noninvasive medical imaging. T2-weighted (T2W) magnetic resonance imaging (MRI) is the most commonly used modality for prostate and urethral segmentation due to its distinguishable features of anatomical texture. In addition to T2W multiplanar images, which capture information in the axial, sagittal and coronal planes, multiparametric MRI modalities such as dynamic contrast enhanced (DCE) and diffusion-weighted imaging (DWI) are usually also acquired in the scanning process to measure functional features. Feature fusion by combining multiparametric and multiplanar images is challenging due to the movement of the patient during image acquisition, the need for accurate image registration and the sheer volume of available scans. Here we propose a multi-encoder deep neural network named 3DDOSPyResidualUSENet to learn anatomical and functional features from multiparametric and multiplanar MRI images. Our extensive experiments on a public dataset show that combining T2W axial, sagittal and coronal images along with DCE information and apparent diffusion coefficient (ADC) maps computed from DWI images results in increased segmentation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arif, M., et al.: Clinically significant prostate cancer detection and segmentation in low-risk patients using a convolutional neural network on multi-parametric MRI. Eur. Radiol. 30(12), 6582–6592 (2020). https://doi.org/10.1007/s00330-020-07008-z

    Article  Google Scholar 

  2. Bardis, M.D., et al.: Applications of artificial intelligence to prostate multiparametric MRI (mpMRI): current and emerging trends. Cancers 12(5), 1204 (2020)

    Article  Google Scholar 

  3. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A.: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Can. J. Clin. 68(6), 394–424 (2018)

    Article  Google Scholar 

  4. Clark, T., Wong, A., Haider, M.A., Khalvati, F.: Fully deep convolutional neural networks for segmentation of the prostate gland in diffusion-weighted MR images. In: International Conference on Image Analysis and Recognition (ICIAR), pp. 97–104 (2017)

    Google Scholar 

  5. Cuocolo, R., et al.: Machine learning applications in prostate cancer magnetic resonance imaging. Eur. Radiol. Exp. 3(1), 1–8 (2019)

    Article  Google Scholar 

  6. Dai, Z., et al.: Segmentation of the prostatic gland and the intraprostatic lesions on multiparametic magnetic resonance imaging using mask region-based convolutional neural networks. Adv. Radiat. Oncol. 5(3), 473–481 (2020)

    Article  Google Scholar 

  7. Fedorov, A., Vangel, M.G., Tempany, C.M., Fennessy, F.M.: Multiparametric magnetic resonance imaging of the prostate: repeatability of volume and apparent diffusion coefficient quantification. Invest. Radiol. 52(9), 538–546 (2017)

    Article  Google Scholar 

  8. Hoar, D., et al.: Combined transfer learning and test-time augmentation improves convolutional neural network-based semantic segmentation of prostate cancer from multi-parametric MR images. Comput. Methods Programs Biomed. 210, 106375 (2021)

    Article  Google Scholar 

  9. Kang, J., Samarasinghe, G., Senanayake, U., Conjeti, S., Sowmya, A.: Deep learning for volumetric segmentation in spatio-temporal data: application to segmentation of prostate in DCE-MRI. In: IEEE International Symposium on Biomedical Imaging (ISBI), pp. 61–65 (2019)

    Google Scholar 

  10. Litjens, G., Debats, O., Barentsz, J., Karssemeijer, N., Huisman, H.: Computer-aided detection of prostate cancer in MRI. IEEE Trans. Med. Imaging 33(5), 1083–1092 (2014)

    Article  Google Scholar 

  11. Litjens, G., Debats, O., van de Ven, W., Karssemeijer, N., Huisman, H.: A pattern recognition approach to zonal segmentation of the prostate on MRI. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 413–420 (2012)

    Google Scholar 

  12. Liu, Y., Zhu, Y., Wang, W., Zheng, B., Qin, X., Wang, P.: Multi-scale discriminative network for prostate cancer lesion segmentation in multiparametric MR images. Med. Phys. 49(11), 7001–7015 (2022)

    Article  Google Scholar 

  13. Mehrtash, A., et al.: Classification of clinical significance of MRI prostate findings using 3D convolutional neural networks. In: SPIE Medical Imaging: Computer-Aided Diagnosis, vol. 10134, pp. 589–592 (2017)

    Google Scholar 

  14. Meyer, A., Schindele, D., von Reibnitz, D., Rak, M., Schostak, M., Hansen, C.: PROSTATEx zone segmentations [dataset]. The Cancer Imaging Archive (2020)

    Google Scholar 

  15. Meyer, A., et al.: Anisotropic 3D multi-stream CNN for accurate prostate segmentation from multi-planar MRI. Comput. Methods Programs Biomed. 200, 105821 (2021)

    Article  Google Scholar 

  16. Meyer, A., et al.: Automatic high resolution segmentation of the prostate from multi-planar MRI. In: IEEE International Symposium on Biomedical Imaging (ISBI), pp. 177–181 (2018)

    Google Scholar 

  17. Meyer, A., et al.: Towards patient-individual PI-Rads v2 sector map: CNN for automatic segmentation of prostatic zones from T2-weighted MRI. In: IEEE International Symposium on Biomedical Imaging (ISBI), pp. 696–700 (2019)

    Google Scholar 

  18. Muñoz-Calahorro, C., García-Sánchez, C., Barrero-Candau, R., García-Ramos, J.B., Rodríguez-Pérez, A.J., Medina-López, R.A.: Anatomical predictors of long-term urinary incontinence after robot-assisted laparoscopic prostatectomy: a systematic review. Neurol. Urodyn. 40(5), 1089–1097 (2021)

    Article  Google Scholar 

  19. Rawla, P.: Epidemiology of prostate cancer. World J. Oncol. 10(2), 63 (2019)

    Article  Google Scholar 

  20. de Rooij, M., Israel, B., Bomers, J.G., Schoots, I.G., Barentsz, J.O.: Can biparametric prostate magnetic resonance imaging fulfill its PROMIS? Eur. Urol. 78(4), 512–514 (2020)

    Article  Google Scholar 

  21. Rundo, L., et al.: Automated prostate gland segmentation based on an unsupervised fuzzy c-means clustering technique using multispectral T1w and T2w MR imaging. Information 8(2), 49 (2017)

    Article  Google Scholar 

  22. Seah, J.C., Tang, J.S., Kitchen, A.: Detection of prostate cancer on multiparametric MRI. In: SPIE Medical Imaging: Computer-Aided Diagnosis, vol. 10134, pp. 585–588 (2017)

    Google Scholar 

  23. Shanmugalingam, K., Sowmya, A., Moses, D., Meijering, E.: Attention guided deep supervision model for prostate segmentation in multisite heterogeneous MRI data. In: International Conference on Medical Imaging with Deep Learning, pp. 1085–1095 (2022)

    Google Scholar 

  24. Tienza, A., Robles, J.E., Hevia, M., Algarra, R., Diez-Caballero, F., Pascual, J.I.: Prevalence analysis of urinary incontinence after radical prostatectomy and influential preoperative factors in a single institution. Aging Male 21(1), 24–30 (2018)

    Article  Google Scholar 

  25. Xu, H., Baxter, J.S.H., Akin, O., Cantor-Rivera, D.: Prostate cancer detection using residual networks. Int. J. Comput. Assist. Radiol. Surg. 14(10), 1647–1650 (2019). https://doi.org/10.1007/s11548-019-01967-5

    Article  Google Scholar 

  26. Yaniv, Z., Lowekamp, B.C., Johnson, H.J., Beare, R.: SimpleITK image-analysis notebooks: a collaborative environment for education and reproducible research. J. Digit. Imaging 31(3), 290–303 (2018)

    Article  Google Scholar 

  27. Zhu, Y., et al.: Fully automatic segmentation on prostate MR images based on cascaded fully convolution network. J. Magn. Reson. Imaging 49(4), 1149–1156 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuruparan Shanmugalingam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shanmugalingam, K., Sowmya, A., Moses, D., Meijering, E. (2024). Prostate Segmentation Using Multiparametric and Multiplanar Magnetic Resonance Images. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14348. Springer, Cham. https://doi.org/10.1007/978-3-031-45673-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45673-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45672-5

  • Online ISBN: 978-3-031-45673-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics