Abstract
Diseases related to the prostate and distal urethra, such as prostate cancer, benign prostatic hyperplasia and urinary incontinence, may be detected and diagnosed through noninvasive medical imaging. T2-weighted (T2W) magnetic resonance imaging (MRI) is the most commonly used modality for prostate and urethral segmentation due to its distinguishable features of anatomical texture. In addition to T2W multiplanar images, which capture information in the axial, sagittal and coronal planes, multiparametric MRI modalities such as dynamic contrast enhanced (DCE) and diffusion-weighted imaging (DWI) are usually also acquired in the scanning process to measure functional features. Feature fusion by combining multiparametric and multiplanar images is challenging due to the movement of the patient during image acquisition, the need for accurate image registration and the sheer volume of available scans. Here we propose a multi-encoder deep neural network named 3DDOSPyResidualUSENet to learn anatomical and functional features from multiparametric and multiplanar MRI images. Our extensive experiments on a public dataset show that combining T2W axial, sagittal and coronal images along with DCE information and apparent diffusion coefficient (ADC) maps computed from DWI images results in increased segmentation performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Arif, M., et al.: Clinically significant prostate cancer detection and segmentation in low-risk patients using a convolutional neural network on multi-parametric MRI. Eur. Radiol. 30(12), 6582–6592 (2020). https://doi.org/10.1007/s00330-020-07008-z
Bardis, M.D., et al.: Applications of artificial intelligence to prostate multiparametric MRI (mpMRI): current and emerging trends. Cancers 12(5), 1204 (2020)
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A.: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Can. J. Clin. 68(6), 394–424 (2018)
Clark, T., Wong, A., Haider, M.A., Khalvati, F.: Fully deep convolutional neural networks for segmentation of the prostate gland in diffusion-weighted MR images. In: International Conference on Image Analysis and Recognition (ICIAR), pp. 97–104 (2017)
Cuocolo, R., et al.: Machine learning applications in prostate cancer magnetic resonance imaging. Eur. Radiol. Exp. 3(1), 1–8 (2019)
Dai, Z., et al.: Segmentation of the prostatic gland and the intraprostatic lesions on multiparametic magnetic resonance imaging using mask region-based convolutional neural networks. Adv. Radiat. Oncol. 5(3), 473–481 (2020)
Fedorov, A., Vangel, M.G., Tempany, C.M., Fennessy, F.M.: Multiparametric magnetic resonance imaging of the prostate: repeatability of volume and apparent diffusion coefficient quantification. Invest. Radiol. 52(9), 538–546 (2017)
Hoar, D., et al.: Combined transfer learning and test-time augmentation improves convolutional neural network-based semantic segmentation of prostate cancer from multi-parametric MR images. Comput. Methods Programs Biomed. 210, 106375 (2021)
Kang, J., Samarasinghe, G., Senanayake, U., Conjeti, S., Sowmya, A.: Deep learning for volumetric segmentation in spatio-temporal data: application to segmentation of prostate in DCE-MRI. In: IEEE International Symposium on Biomedical Imaging (ISBI), pp. 61–65 (2019)
Litjens, G., Debats, O., Barentsz, J., Karssemeijer, N., Huisman, H.: Computer-aided detection of prostate cancer in MRI. IEEE Trans. Med. Imaging 33(5), 1083–1092 (2014)
Litjens, G., Debats, O., van de Ven, W., Karssemeijer, N., Huisman, H.: A pattern recognition approach to zonal segmentation of the prostate on MRI. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 413–420 (2012)
Liu, Y., Zhu, Y., Wang, W., Zheng, B., Qin, X., Wang, P.: Multi-scale discriminative network for prostate cancer lesion segmentation in multiparametric MR images. Med. Phys. 49(11), 7001–7015 (2022)
Mehrtash, A., et al.: Classification of clinical significance of MRI prostate findings using 3D convolutional neural networks. In: SPIE Medical Imaging: Computer-Aided Diagnosis, vol. 10134, pp. 589–592 (2017)
Meyer, A., Schindele, D., von Reibnitz, D., Rak, M., Schostak, M., Hansen, C.: PROSTATEx zone segmentations [dataset]. The Cancer Imaging Archive (2020)
Meyer, A., et al.: Anisotropic 3D multi-stream CNN for accurate prostate segmentation from multi-planar MRI. Comput. Methods Programs Biomed. 200, 105821 (2021)
Meyer, A., et al.: Automatic high resolution segmentation of the prostate from multi-planar MRI. In: IEEE International Symposium on Biomedical Imaging (ISBI), pp. 177–181 (2018)
Meyer, A., et al.: Towards patient-individual PI-Rads v2 sector map: CNN for automatic segmentation of prostatic zones from T2-weighted MRI. In: IEEE International Symposium on Biomedical Imaging (ISBI), pp. 696–700 (2019)
Muñoz-Calahorro, C., García-Sánchez, C., Barrero-Candau, R., García-Ramos, J.B., Rodríguez-Pérez, A.J., Medina-López, R.A.: Anatomical predictors of long-term urinary incontinence after robot-assisted laparoscopic prostatectomy: a systematic review. Neurol. Urodyn. 40(5), 1089–1097 (2021)
Rawla, P.: Epidemiology of prostate cancer. World J. Oncol. 10(2), 63 (2019)
de Rooij, M., Israel, B., Bomers, J.G., Schoots, I.G., Barentsz, J.O.: Can biparametric prostate magnetic resonance imaging fulfill its PROMIS? Eur. Urol. 78(4), 512–514 (2020)
Rundo, L., et al.: Automated prostate gland segmentation based on an unsupervised fuzzy c-means clustering technique using multispectral T1w and T2w MR imaging. Information 8(2), 49 (2017)
Seah, J.C., Tang, J.S., Kitchen, A.: Detection of prostate cancer on multiparametric MRI. In: SPIE Medical Imaging: Computer-Aided Diagnosis, vol. 10134, pp. 585–588 (2017)
Shanmugalingam, K., Sowmya, A., Moses, D., Meijering, E.: Attention guided deep supervision model for prostate segmentation in multisite heterogeneous MRI data. In: International Conference on Medical Imaging with Deep Learning, pp. 1085–1095 (2022)
Tienza, A., Robles, J.E., Hevia, M., Algarra, R., Diez-Caballero, F., Pascual, J.I.: Prevalence analysis of urinary incontinence after radical prostatectomy and influential preoperative factors in a single institution. Aging Male 21(1), 24–30 (2018)
Xu, H., Baxter, J.S.H., Akin, O., Cantor-Rivera, D.: Prostate cancer detection using residual networks. Int. J. Comput. Assist. Radiol. Surg. 14(10), 1647–1650 (2019). https://doi.org/10.1007/s11548-019-01967-5
Yaniv, Z., Lowekamp, B.C., Johnson, H.J., Beare, R.: SimpleITK image-analysis notebooks: a collaborative environment for education and reproducible research. J. Digit. Imaging 31(3), 290–303 (2018)
Zhu, Y., et al.: Fully automatic segmentation on prostate MR images based on cascaded fully convolution network. J. Magn. Reson. Imaging 49(4), 1149–1156 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Shanmugalingam, K., Sowmya, A., Moses, D., Meijering, E. (2024). Prostate Segmentation Using Multiparametric and Multiplanar Magnetic Resonance Images. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14348. Springer, Cham. https://doi.org/10.1007/978-3-031-45673-2_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-45673-2_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-45672-5
Online ISBN: 978-3-031-45673-2
eBook Packages: Computer ScienceComputer Science (R0)