Optimization Strategies for BERT-Based Named Entity Recognition | SpringerLink
Skip to main content

Optimization Strategies for BERT-Based Named Entity Recognition

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14197))

Included in the following conference series:

  • 480 Accesses

Abstract

Transfer learning through language modeling achieved state-of-the-art results for several natural language processing tasks such as named entity recognition, question answering, and sentiment analysis. However, despite these advancements, some tasks still need more specific solutions. This paper explores different approaches to enhance the performance of Named Entity Recognition (NER) in transformer-based models that have been pre-trained for language modeling. We investigate model soups and domain adaptation methods for Portuguese language entity recognition, providing valuable insights into the effectiveness of these methods in NER performance and contributing to the development of more accurate models. We also evaluate NER performance in few/zero-shot learning settings with a causal language model. In particular, we evaluate diverse BERT-based models trained on different datasets considering general and specific domains. Our results show significant improvements when considering model soup techniques and in-domain pretraining compared to within-task pretraining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8464
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The adapted version refers to a setting called “selective" by the authors, in which only 5 classes are used (PERSON, ORGANIZATION, LOCAL, VALUE and DATE).

  2. 2.

    Here, we used label-wise token replacement (LwTR) [3].

  3. 3.

    We used the hyperparameters for learning rate and batch size suggested by Silva et al. [11].

  4. 4.

    This dataset contains non-public data and cannot be made publicly available.

References

  1. Brown, T., et al.: Language models are few-shot learners. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 1877–1901. Curran Associates, Inc. (2020), https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

  2. Chen, Y., Mikkelsen, J., Binder, A., Alt, C., Hennig, L.: A comparative study of pre-trained encoders for low-resource named entity recognition. In: Gella, S., et al (eds.) Proceedings of the 7th Workshop on Representation Learning for NLP, RepL4NLP@ACL 2022, Dublin, Ireland, 26 May 2022, pp. 46–59. Association for Computational Linguistics (2022). https://doi.org/10.18653/v1/2022.repl4nlp-1.6

  3. Dai, X., Adel, H.: An analysis of simple data augmentation for named entity recognition. In: Scott, D., Bel, N., Zong, C. (eds.) Proceedings of the 28th International Conference on Computational Linguistics, COLING 2020, Barcelona, Spain (Online), 8-13 December 2020, pp. 3861–3867. International Committee on Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.coling-main.343

  4. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. CoRR arXiv: 1810.04805

  5. Fu, J., Liu, P., Neubig, G.: Interpretable multi-dataset evaluation for named entity recognition. In: Webber, B., Cohn, T., He, Y., Liu, Y. (eds.) Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, 16-20 November 2020, pp. 6058–6069. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.emnlp-main.489

  6. Houlsby, N., et al.: Parameter-efficient transfer learning for NLP. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA. Proceedings of Machine Learning Research, vol. 97, pp. 2790–2799. PMLR (2019), http://proceedings.mlr.press/v97/houlsby19a.html

  7. Monteiro, M.: Extrator de entidades mencionadas em notícias da mídia. https://github.com/SecexSaudeTCU/noticias_ner (2021), (Accessed 21 May 2022)

  8. Monteiro, M.: Riskdata brazilian portuguese ner. https://huggingface.co/monilouise/ner_news_portuguese (2021), (Accessed 21 May 2022)

  9. Rodrigues, J., et al.: Advancing neural encoding of portuguese with transformer albertina PT-. CoRR https://doi.org/10.48550/arXiv.2305.06721, https://doi.org/10.48550/arXiv.2305.06721 (2023)

  10. Santos, D., Seco, N., Cardoso, N., Vilela, R.: HAREM: an advanced NER evaluation contest for portuguese. In: Calzolari, N., et al. (eds.) Proceedings of the Fifth International Conference on Language Resources and Evaluation, LREC 2006, Genoa, Italy, 22-28 May 2006, pp. 1986–1991. European Language Resources Association (ELRA) (2006), http://www.lrec-conf.org/proceedings/lrec2006/summaries/59.html

  11. Silva, E.H.M.D., Laterza, J., Silva, M.P.P.D., Ladeira, M.: A proposal to identify stakeholders from news for the institutional relationship management activities of an institution based on named entity recognition using BERT. In: Wani, M.A., Sethi, I.K., Shi, W., Qu, G., Raicu, D.S., Jin, R. (eds.) 20th IEEE International Conference on Machine Learning and Applications, ICMLA 2021, Pasadena, CA, USA, 13–16 December 2021, pp. 1569–1575. IEEE (2021). https://doi.org/10.1109/ICMLA52953.2021.00251

  12. Souza, F., Nogueira, R., Lotufo, R.: BERTimbau: pretrained BERT models for Brazilian Portuguese. In: Cerri, R., Prati, R.C. (eds.) BRACIS 2020. LNCS (LNAI), vol. 12319, pp. 403–417. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61377-8_28

    Chapter  Google Scholar 

  13. Sun, C., Qiu, X., Xu, Y., Huang, X.: How to fine-tune BERT for text classification? In: Sun, M., Huang, X., Ji, H., Liu, Z., Liu, Y. (eds.) CCL 2019. LNCS (LNAI), vol. 11856, pp. 194–206. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32381-3_16

    Chapter  Google Scholar 

  14. Tänzer, M., Ruder, S., Rei, M.: Memorisation versus generalisation in pre-trained language models. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 7564–7578. Association for Computational Linguistics, Dublin, Ireland (May 2022). https://doi.org/10.18653/v1/2022.acl-long.521

  15. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.u., Polosukhin, I.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

  16. Wagner Filho, J.A., Wilkens, R., Idiart, M., Villavicencio, A.: The brWaC corpus: a new open resource for Brazilian Portuguese. In: Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018). European Language Resources Association (ELRA), Miyazaki, Japan (May 2018). https://aclanthology.org/L18-1686

  17. Wortsman, M., et al.: Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time. CoRR abs/2203.05482 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monique Monteiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Monteiro, M., Zanchettin, C. (2023). Optimization Strategies for BERT-Based Named Entity Recognition. In: Naldi, M.C., Bianchi, R.A.C. (eds) Intelligent Systems. BRACIS 2023. Lecture Notes in Computer Science(), vol 14197. Springer, Cham. https://doi.org/10.1007/978-3-031-45392-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45392-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45391-5

  • Online ISBN: 978-3-031-45392-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics