MPSurv: End-to-End Multi-model Pseudo-Label Model for Brain Tumor Survival Prediction with Population Information Integration | SpringerLink
Skip to main content

MPSurv: End-to-End Multi-model Pseudo-Label Model for Brain Tumor Survival Prediction with Population Information Integration

  • Conference paper
  • First Online:
Computational Mathematics Modeling in Cancer Analysis (CMMCA 2023)

Abstract

Predicting brain tumor survival can aid physicians in better assessing the efficacy of treatments and adjusting treatment plans in clinical practices to enhance patient survival. Recently, deep learning techniques have attracted massive attention in predicting brain tumor survival. However, the majority of existing methods necessitate at least two or more independent networks for knowledge sharing later in the model and overlook the significance of population information. In this paper, we propose an end-to-end multi-model brain tumor survival prediction (MPSurv) model that incorporates patient population information. Moreover, given the presence of censored data, we propose to address this issue by generating pseudo-labels, which in turn augments the original data and improves the utilization of the dataset. We have collected and supplemented survival labels based on the BraTS 2021 dataset for the training and validation of segmentation and prediction tasks. Experimental results demonstrate that our model enhances the accuracy of brain tumor survival prediction and exhibits superior generalizability. The source code is available at: https://github.com/APTX574/MPSurv.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agravat, R.R., Raval, M.S.: Brain tumor segmentation and survival prediction. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 338–348. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_32

    Chapter  Google Scholar 

  2. Ali, M.J., Akram, M.T., Saleem, H., Raza, B., Shahid, A.R.: Glioma segmentation using ensemble of 2D/3D U-Nets and survival prediction using multiple features fusion. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12659, pp. 189–199. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72087-2_17

    Chapter  Google Scholar 

  3. Baid, U., et al.: The RSNA-ASNR-MICCAI brats 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314 (2021)

  4. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. data 4(1), 1–13 (2017)

    Article  Google Scholar 

  5. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv preprint arXiv:1811.02629 (2018)

  6. Cox, D.R.: Regression models and life-tables. J. Roy. Stat. Soc.: Ser. B (Methodol.) 34(2), 187–202 (1972)

    MathSciNet  MATH  Google Scholar 

  7. Cui, C., et al.: Survival prediction of brain cancer with incomplete radiology, pathology, genomic, and demographic data. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol. 13435, pp. 626–635. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_60

  8. Feng, X., Dou, Q., Tustison, N., Meyer, C.: Brain tumor segmentation with uncertainty estimation and overall survival prediction. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 304–314. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_29

    Chapter  Google Scholar 

  9. Fernandez, F.G.: TorchCAM: class activation explorer (2020). https://github.com/frgfm/torch-cam

  10. Hermoza, R., Maicas, G., Nascimento, J.C., Carneiro, G.: Post-HOC overall survival time prediction from brain MRI. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 1476–1480. IEEE (2021)

    Google Scholar 

  11. Hermoza, R., Maicas, G., Nascimento, J.C., Carneiro, G.: Censor-aware semi-supervised learning for survival time prediction from medical images. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol. 13437, pp. 213–222. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16449-1_21

  12. Islam, M., Vibashan, V.S., Jose, V.J.M., Wijethilake, N., Utkarsh, U., Ren, H.: Brain tumor segmentation and survival prediction using 3D attention UNet. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 262–272. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_25

    Chapter  Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  14. Louis, D.N., et al.: The 2021 who classification of tumors of the central nervous system: a summary. Neuro Oncol. 23(8), 1231–1251 (2021)

    Article  Google Scholar 

  15. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  16. Nie, D., Zhang, H., Adeli, E., Liu, L., Shen, D.: 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 212–220. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_25

    Chapter  Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  18. Shi, W., Pang, E., Wu, Q., Lin, F.: Brain tumor segmentation using dense channels 2D U-Net and multiple feature extraction network. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 273–283. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_26

    Chapter  Google Scholar 

  19. Tang, Z., et al.: Deep learning of imaging phenotype and genotype for predicting overall survival time of glioblastoma patients. IEEE Trans. Med. Imaging 39(6), 2100–2109 (2020)

    Article  Google Scholar 

  20. Wang, F., Jiang, R., Zheng, L., Meng, C., Biswal, B.: 3D U-Net based brain tumor segmentation and survival days prediction. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 131–141. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_13

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (No. LY21F020017), National Natural Science Foundation of China (No.U20A20386, U22A2033), Chinese Key-Area Research and Development Program of Guangdong Province (2020B0101350001), GuangDong Basic and Applied Basic Research Foundation (No. 2022A1515110570), Innovation teams of youth innovation in science and technology of high education institutions of Shandong province (No. 2021KJ088), the Shenzhen Science and Technology Program (JCYJ20220818103001002), and the Guangdong Provincial Key Laboratory of Big Data Computing, The Chinese University of Hong Kong, Shenzhen.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruiquan Ge or Changmiao Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 174 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Q. et al. (2023). MPSurv: End-to-End Multi-model Pseudo-Label Model for Brain Tumor Survival Prediction with Population Information Integration. In: Qin, W., Zaki, N., Zhang, F., Wu, J., Yang, F., Li, C. (eds) Computational Mathematics Modeling in Cancer Analysis. CMMCA 2023. Lecture Notes in Computer Science, vol 14243. Springer, Cham. https://doi.org/10.1007/978-3-031-45087-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45087-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45086-0

  • Online ISBN: 978-3-031-45087-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics