Abstract
Predicting brain tumor survival can aid physicians in better assessing the efficacy of treatments and adjusting treatment plans in clinical practices to enhance patient survival. Recently, deep learning techniques have attracted massive attention in predicting brain tumor survival. However, the majority of existing methods necessitate at least two or more independent networks for knowledge sharing later in the model and overlook the significance of population information. In this paper, we propose an end-to-end multi-model brain tumor survival prediction (MPSurv) model that incorporates patient population information. Moreover, given the presence of censored data, we propose to address this issue by generating pseudo-labels, which in turn augments the original data and improves the utilization of the dataset. We have collected and supplemented survival labels based on the BraTS 2021 dataset for the training and validation of segmentation and prediction tasks. Experimental results demonstrate that our model enhances the accuracy of brain tumor survival prediction and exhibits superior generalizability. The source code is available at: https://github.com/APTX574/MPSurv.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agravat, R.R., Raval, M.S.: Brain tumor segmentation and survival prediction. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 338–348. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_32
Ali, M.J., Akram, M.T., Saleem, H., Raza, B., Shahid, A.R.: Glioma segmentation using ensemble of 2D/3D U-Nets and survival prediction using multiple features fusion. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12659, pp. 189–199. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72087-2_17
Baid, U., et al.: The RSNA-ASNR-MICCAI brats 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314 (2021)
Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. data 4(1), 1–13 (2017)
Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv preprint arXiv:1811.02629 (2018)
Cox, D.R.: Regression models and life-tables. J. Roy. Stat. Soc.: Ser. B (Methodol.) 34(2), 187–202 (1972)
Cui, C., et al.: Survival prediction of brain cancer with incomplete radiology, pathology, genomic, and demographic data. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol. 13435, pp. 626–635. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_60
Feng, X., Dou, Q., Tustison, N., Meyer, C.: Brain tumor segmentation with uncertainty estimation and overall survival prediction. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 304–314. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_29
Fernandez, F.G.: TorchCAM: class activation explorer (2020). https://github.com/frgfm/torch-cam
Hermoza, R., Maicas, G., Nascimento, J.C., Carneiro, G.: Post-HOC overall survival time prediction from brain MRI. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 1476–1480. IEEE (2021)
Hermoza, R., Maicas, G., Nascimento, J.C., Carneiro, G.: Censor-aware semi-supervised learning for survival time prediction from medical images. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol. 13437, pp. 213–222. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16449-1_21
Islam, M., Vibashan, V.S., Jose, V.J.M., Wijethilake, N., Utkarsh, U., Ren, H.: Brain tumor segmentation and survival prediction using 3D attention UNet. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 262–272. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_25
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Louis, D.N., et al.: The 2021 who classification of tumors of the central nervous system: a summary. Neuro Oncol. 23(8), 1231–1251 (2021)
Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)
Nie, D., Zhang, H., Adeli, E., Liu, L., Shen, D.: 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 212–220. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_25
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Shi, W., Pang, E., Wu, Q., Lin, F.: Brain tumor segmentation using dense channels 2D U-Net and multiple feature extraction network. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 273–283. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_26
Tang, Z., et al.: Deep learning of imaging phenotype and genotype for predicting overall survival time of glioblastoma patients. IEEE Trans. Med. Imaging 39(6), 2100–2109 (2020)
Wang, F., Jiang, R., Zheng, L., Meng, C., Biswal, B.: 3D U-Net based brain tumor segmentation and survival days prediction. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 131–141. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_13
Acknowledgements
This work was supported by the Zhejiang Provincial Natural Science Foundation of China (No. LY21F020017), National Natural Science Foundation of China (No.U20A20386, U22A2033), Chinese Key-Area Research and Development Program of Guangdong Province (2020B0101350001), GuangDong Basic and Applied Basic Research Foundation (No. 2022A1515110570), Innovation teams of youth innovation in science and technology of high education institutions of Shandong province (No. 2021KJ088), the Shenzhen Science and Technology Program (JCYJ20220818103001002), and the Guangdong Provincial Key Laboratory of Big Data Computing, The Chinese University of Hong Kong, Shenzhen.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, Q. et al. (2023). MPSurv: End-to-End Multi-model Pseudo-Label Model for Brain Tumor Survival Prediction with Population Information Integration. In: Qin, W., Zaki, N., Zhang, F., Wu, J., Yang, F., Li, C. (eds) Computational Mathematics Modeling in Cancer Analysis. CMMCA 2023. Lecture Notes in Computer Science, vol 14243. Springer, Cham. https://doi.org/10.1007/978-3-031-45087-7_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-45087-7_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-45086-0
Online ISBN: 978-3-031-45087-7
eBook Packages: Computer ScienceComputer Science (R0)