Task-Aware Adversarial Feature Perturbation for Cross-Domain Few-Shot Learning | SpringerLink
Skip to main content

Task-Aware Adversarial Feature Perturbation for Cross-Domain Few-Shot Learning

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14256))

Included in the following conference series:

  • 1256 Accesses

Abstract

Currently, metric-based meta-learning methods have achieved great success in few-shot learning (FSL). However, most works assume a high similarity between base classes and novel classes, and their performance can be greatly reduced when comes to domain-shift problem. As a result, cross-domain few-shot learning (CD-FSL) methods are proposed to tackle the domain-shift problem, which places a higher demand on the robustness of the meta-knowledge. To this end, we propose a feature augmentation method called Task-Aware Adversarial Feature Perturbation (TAAFP) to improve the generalization of the existing FSL models. Compared to the traditional adversarial training, our adversarial perturbations are generated from the feature space and contain more sample relationship information, which is discovered by the Task Attention Module. Task Attention Module is designed based on a transformer to capture more discriminative features in a task. Therefore, our perturbations can easily attack the extraction process for discriminative features, forcing the model to extract more robust discriminative features. In addition, a regularization loss is introduced to ensure the predictions of the adversarial augmented task remain similar to the original task. We conduct extensive classification experiments in five datasets under the setting of cross-domain few-shot classification. The result shows that our method can significantly improve the classification accuracy in both seen and unseen domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blanchard, G., Lee, G., Scott, C.: Generalizing from several related classification tasks to a new unlabeled sample. In: NIPS (2011)

    Google Scholar 

  2. Chen, W.Y., Liu, Y.C., Kira, Z., Wang, Y.C.F., Huang, J.B.: A closer look at few-shot classification. In: ICLR (2019)

    Google Scholar 

  3. Das, R., Wang, Y., Moura, J.M.F.: On the importance of distractors for few-shot classification. CoRR (2021)

    Google Scholar 

  4. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: ICML, pp. 1126–1135 (2017)

    Google Scholar 

  5. Fu, Y., Fu, Y., Jiang, Y.: Meta-FDMixup: cross-domain few-shot learning guided by labeled target data. In: ACM Multimedia (2021)

    Google Scholar 

  6. Fu, Y., Xie, Y., Fu, Y., Chen, J., Jiang, Y.: Wave-san: wavelet based style augmentation network for cross-domain few-shot learning. CoRR (2022)

    Google Scholar 

  7. Ghifary, M., Kleijn, W.B., Zhang, M., Balduzzi, D.: Domain generalization for object recognition with multi-task autoencoders. In: ICCV (2015)

    Google Scholar 

  8. Guo, Yunhui, et al.: A broader study of cross-domain few-shot learning. In: Vedaldi, Andrea, Bischof, Horst, Brox, Thomas, Frahm, Jan-Michael. (eds.) ECCV 2020. LNCS, vol. 12372, pp. 124–141. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58583-9_8

    Chapter  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  10. Horn, G.V., et al.: The inaturalist species classification and detection dataset. In: CVPR (2018)

    Google Scholar 

  11. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-grained categorization. In: ICCV (2013)

    Google Scholar 

  12. Li, H., Pan, S.J., Wang, S., Kot, A.C.: Domain generalization with adversarial feature learning. In: CVPR (2018)

    Google Scholar 

  13. Liang, H., Zhang, Q., Dai, P., Lu, J.: Boosting the generalization capability in cross-domain few-shot learning via noise-enhanced supervised autoencoder. CoRR (2021)

    Google Scholar 

  14. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: ICML

    Google Scholar 

  15. Muandet, K., Balduzzi, D., Schölkopf, B.: Domain generalization via invariant feature representation. In: ICML (2013)

    Google Scholar 

  16. Phoo, C.P., Hariharan, B.: Self-training for few-shot transfer across extreme task differences. In: ICLR (2021)

    Google Scholar 

  17. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: ICLR (2017)

    Google Scholar 

  18. Rusu, A.A., et al.: Meta-learning with latent embedding optimization. In: ICLR (2019)

    Google Scholar 

  19. Sankaranarayanan, S., Jain, A., Chellappa, R., Lim, S.: Regularizing deep networks using efficient layerwise adversarial training. In: AAAI (2018)

    Google Scholar 

  20. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T.P.: Meta-learning with memory-augmented neural networks. In: ICML

    Google Scholar 

  21. Satorras, V.G., Estrach, J.B.: Few-shot learning with graph neural networks. In: ICLR (2018)

    Google Scholar 

  22. Shankar, S., Piratla, V., Chakrabarti, S., Chaudhuri, S., Jyothi, P., Sarawagi, S.: Generalizing across domains via cross-gradient training. In: ICLR (2018)

    Google Scholar 

  23. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: NIPS (2017)

    Google Scholar 

  24. Sun, J., Lapuschkin, S., Samek, W., Zhao: Explanation-guided training for cross-domain few-shot classification. In: ICPR (2020)

    Google Scholar 

  25. Sun, Q., Liu, Y., Chua, T.S., Schiele, B.: Meta-transfer learning for few-shot learning. In: CVPR (2019)

    Google Scholar 

  26. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: relation network for few-shot learning. In: CVPR (2018)

    Google Scholar 

  27. Szegedy, C., et al.: Intriguing properties of neural networks. In: ICLR (2014)

    Google Scholar 

  28. Tseng, H.Y., Lee, H.Y., Huang, J.B., Yang, M.H.: Cross-domain few-shot classification via learned feature-wise transformation. In: ICLR (2020)

    Google Scholar 

  29. Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D.: Matching networks for one shot learning. In: NIPS (2016)

    Google Scholar 

  30. Volpi, R., Namkoong, H., Sener, O., Duchi, J.C., Murino, V., Savarese, S.: Generalizing to unseen domains via adversarial data augmentation. In: NIPS (2018)

    Google Scholar 

  31. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds-200-2011 Dataset. Technical report (2011)

    Google Scholar 

  32. Wang, H., Deng, Z.: Cross-domain few-shot classification via adversarial task augmentation. In: IJCAI (2021)

    Google Scholar 

  33. Zhang, H., Cissé, M., Dauphin, Y.N., Lopez-Paz, D.: Mixup: beyond empirical risk minimization. In: ICLR (2018)

    Google Scholar 

  34. Zhou, B., Lapedriza, À., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition (2018)

    Google Scholar 

  35. Zhou, K., Yang, Y., Qiao, Y., Xiang, T.: Domain generalization with MixStyle. In: ICLR (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixiao Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, Y., Li, F. (2023). Task-Aware Adversarial Feature Perturbation for Cross-Domain Few-Shot Learning. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14256. Springer, Cham. https://doi.org/10.1007/978-3-031-44213-1_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44213-1_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44212-4

  • Online ISBN: 978-3-031-44213-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics