Pick and Trace: Instance Segmentation for Filamentous Objects with a Recurrent Neural Network | SpringerLink
Skip to main content

Pick and Trace: Instance Segmentation for Filamentous Objects with a Recurrent Neural Network

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14227))

  • 3927 Accesses

Abstract

Filamentous objects are ubiquitous in biomedical images, and segmenting individual filaments is fundamental for biomedical research. Unlike common objects with well-defined boundaries and centers, filaments are thin, non-rigid, varying in shape, and often densely overlapping. These properties make it extremely challenging to extract individual filaments. This paper proposes a novel approach to extract filamentous objects by transforming an instance segmentation problem into a sequence modeling problem. Our approach first identifies filaments’ tip points, and we segment each instance by tracing them from each tip with a sequential encoder-decoder framework. The proposed method simulates the process of humans extracting filaments: pick a tip and trace the filament. As few datasets contain instance labels of filaments, we first generate synthetic filament datasets for training and evaluation. Then, we collected a dataset of 15 microscopic images of microtubules with instance labels for evaluation. Our proposed method can alleviate the data shortage problem since our proposed model can be trained with synthetic data and achieve state-of-art results when directly evaluated on the microtubule dataset and P. rubescens dataset. We also demonstrate our approaches’ capabilities in extracting short and thick elongated objects by evaluating on the C. elegans dataset. Our method achieves a comparable result compared to the state-of-art method with faster processing time. Our code is available at https://github.com/VimsLab/DRIFT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, H., Qi, X., Yu, L., Heng, P.A.: DCAN: deep contour-aware networks for accurate gland segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2487–2496 (2016)

    Google Scholar 

  2. Chen, L., Strauch, M., Merhof, D.: Instance segmentation of biomedical images with an object-aware embedding learned with local constraints. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 451–459. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_50

    Chapter  Google Scholar 

  3. Chen, Y., Wang, Z., Peng, Y., Zhang, Z., Yu, G., Sun, J.: Cascaded pyramid network for multi-person pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7103–7112 (2018)

    Google Scholar 

  4. Dai, J., He, K., Li, Y., Ren, S., Sun, J.: Instance-sensitive fully convolutional networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 534–549. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_32

    Chapter  Google Scholar 

  5. De Brabandere, B., Neven, D., Van Gool, L.: Semantic instance segmentation with a discriminative loss function. arXiv preprint arXiv:1708.02551 (2017)

  6. Gao, N., et al.: SSAP: single-shot instance segmentation with affinity pyramid. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 642–651 (2019)

    Google Scholar 

  7. Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Simultaneous detection and segmentation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 297–312. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_20

    Chapter  Google Scholar 

  8. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988. IEEE (2017)

    Google Scholar 

  9. Hirsch, P., Mais, L., Kainmueller, D.: PatchPerPix for instance segmentation. arXiv preprint arXiv:2001.07626 (2020)

  10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  11. Januszewski, M., et al.: High-precision automated reconstruction of neurons with flood-filling networks. Nat. Methods 15(8), 605–610 (2018)

    Article  Google Scholar 

  12. Januszewski, M., Maitin-Shepard, J., Li, P., Kornfeld, J., Denk, W., Jain, V.: Flood-filling networks. arXiv preprint arXiv:1611.00421 (2016)

  13. Ke, L., Tai, Y.W., Tang, C.K.: Deep occlusion-aware instance segmentation with overlapping bilayers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4019–4028 (2021)

    Google Scholar 

  14. Kulikov, V., Lempitsky, V.: Instance segmentation of biological images using harmonic embeddings. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3843–3851 (2020)

    Google Scholar 

  15. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection (2017)

    Google Scholar 

  16. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  17. Liu, Y., Kolagunda, A., Treible, W., Nedo, A., Caplan, J., Kambhamettu, C.: Intersection to overpass: instance segmentation on filamentous structures with an orientation-aware neural network and terminus pairing algorithm. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 125–133 (2019)

    Google Scholar 

  18. Liu, Y., et al.: Densely connected stacked U-network for filament segmentation in microscopy images. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11134, pp. 403–411. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11024-6_30

    Chapter  Google Scholar 

  19. Liu, Y., et al.: Affinity derivation and graph merge for instance segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 708–724. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_42

    Chapter  Google Scholar 

  20. Ljosa, V., Sokolnicki, K.L., Carpenter, A.E.: Annotated high-throughput microscopy image sets for validation. Nat. Methods 9(7), 637–637 (2012)

    Article  Google Scholar 

  21. Novotny, D., Albanie, S., Larlus, D., Vedaldi, A.: Semi-convolutional operators for instance segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 89–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_6

    Chapter  Google Scholar 

  22. Paszke, A., et al.: Automatic differentiation in PyTorch (2017)

    Google Scholar 

  23. Ren, M., Zemel, R.S.: End-to-end instance segmentation with recurrent attention. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, pp. 21–26 (2017)

    Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  25. Salvador, A., et al.: Recurrent neural networks for semantic instance segmentation. arXiv preprint arXiv:1712.00617 (2017)

  26. Xu, T., et al.: SOAX: a software for quantification of 3D biopolymer networks. Sci. Rep. 5, 9081 (2015)

    Article  Google Scholar 

  27. Yi, J., et al.: Multi-scale cell instance segmentation with keypoint graph based bounding boxes. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 369–377. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_41

    Chapter  Google Scholar 

  28. Zeder, M., Van den Wyngaert, S., Köster, O., Felder, K.M., Pernthaler, J.: Automated quantification and sizing of unbranched filamentous cyanobacteria by model-based object-oriented image analysis. Appl. Environ. Microbiol. 76(5), 1615–1622 (2010)

    Article  Google Scholar 

  29. Zhang, Z., Nishimura, Y., Kanchanawong, P.: Extracting microtubule networks from superresolution single-molecule localization microscopy data. Mol. Biol. Cell 28(2), 333–345 (2017)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Institute of General Medical Sciences grant (R01 GM097587) from the National Institutes of Health. Microscopy equipment was acquired with an NIH-shared instrumentation grant (S10 OD016361) and, access was supported by the NIH-NIGMS (P20 GM103446 and P20 GM139760) and the State of Delaware.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2805 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Peng, S., Caplan, J., Kambhamettu, C. (2023). Pick and Trace: Instance Segmentation for Filamentous Objects with a Recurrent Neural Network. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14227. Springer, Cham. https://doi.org/10.1007/978-3-031-43993-3_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43993-3_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43992-6

  • Online ISBN: 978-3-031-43993-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics