Modeling Alzheimers’ Disease Progression from Multi-task and Self-supervised Learning Perspective with Brain Networks | SpringerLink
Skip to main content

Modeling Alzheimers’ Disease Progression from Multi-task and Self-supervised Learning Perspective with Brain Networks

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Alzheimer’s disease (AD) is a common irreversible neurodegenerative disease among elderlies. Establishing relationships between brain networks and cognitive scores plays a vital role in identifying the progression of AD. However, most of the previous works focus on a single time point, without modeling the disease progression with longitudinal brain networks data. Besides, the longitudinal data is insufficient for sufficiently modeling the predictive models. To address these issues, we propose a \(\pmb {\textrm{S}}\)elf-supervised \(\pmb {\textrm{M}}\)ulti-Task learning \(\pmb {\textrm{P}}\)rogression model SMP-Net for modeling the relationship between longitudinal brain networks and cognitive scores. Specifically, the proposed model is trained in a self-supervised way by designing a masked graph auto-encoder and a temporal contrastive learning that simultaneously learn the structural and evolutional features from the longitudinal brain networks. Furthermore, we propose a temporal multi-task learning paradigm to model the relationship among multiple cognitive scores prediction tasks. Experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset show the effectiveness of our method and achieve consistent improvements over state-of-the-art methods in terms of Mean Absolute Error (MAE), Pearson Correlation Coefficient (PCC) and Concordance Correlation Coefficient (CCC). Our code is available at https://github.com/IntelliDAL/Graph/tree/main/SMP-Net.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://adni.loni.usc.edu/.

References

  1. Aviles-Rivero, A.I., Runkel, C., Papadakis, N., Kourtzi, Z., Schönlieb, C.B.: Multi-modal hypergraph diffusion network with dual prior for Alzheimer classification. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part III. LNCS, vol. 13433, pp. 717–727. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_69

    Chapter  Google Scholar 

  2. Brand, L., Wang, H., Huang, H., Risacher, S., Saykin, A., Shen, L.: Joint high-order multi-task feature learning to predict the progression of Alzheimer’s disease. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018, Part I. LNCS, vol. 11070, pp. 555–562. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_63

    Chapter  Google Scholar 

  3. Chen, Z., Liu, Y., Zhang, Y., Li, Q., Initiative, A.D.N., et al.: Orthogonal latent space learning with feature weighting and graph learning for multimodal Alzheimer’s disease diagnosis. Med. Image Anal. 84, 102698 (2023)

    Article  Google Scholar 

  4. Graves, A.: Long short-term memory. In: Graves, A. (ed.) Supervised Sequence Labelling with Recurrent Neural Networks. SCI, vol. 385, pp. 37–45. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24797-2_4

    Chapter  MATH  Google Scholar 

  5. Huang, Y., Chung, A.C.: Disease prediction with edge-variational graph convolutional networks. Med. Image Anal. 77, 102375 (2022)

    Article  Google Scholar 

  6. Jung, W., Jun, E., Suk, H.I., Initiative, A.D.N., et al.: Deep recurrent model for individualized prediction of Alzheimer’s disease progression. Neuroimage 237, 118143 (2021)

    Article  Google Scholar 

  7. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  8. Liang, W., Zhang, K., Cao, P., Liu, X., Yang, J., Zaiane, O.: Rethinking modeling Alzheimer’s disease progression from a multi-task learning perspective with deep recurrent neural network. Comput. Biol. Med. 138, 104935 (2021)

    Article  Google Scholar 

  9. Liao, W., et al.: MUSCLE: multi-task self-supervised continual learning to pre-train deep models for X-ray images of multiple body parts. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part VIII. LNCS, vol. 13438, pp. 151–161. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_15

    Chapter  Google Scholar 

  10. Logothetis, N.K.: What we can do and what we cannot do with fMRI. Nature 453(7197), 869–878 (2008)

    Article  Google Scholar 

  11. Marinescu, R.V., et al.: Tadpole challenge: prediction of longitudinal evolution in Alzheimer’s disease. arXiv preprint arXiv:1805.03909 (2018)

  12. Nguyen, H.D., Clément, M., Mansencal, B., Coupé, P.: Interpretable differential diagnosis for Alzheimer’s disease and frontotemporal dementia. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part I. LNCS, vol. 13431, pp. 55–65. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_6

    Chapter  Google Scholar 

  13. Pareja, A., et al.: EvolveGCN: evolving graph convolutional networks for dynamic graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5363–5370 (2020)

    Google Scholar 

  14. Parisot, S., et al.: Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer’s disease. Med. Image Anal. 48, 117–130 (2018)

    Article  Google Scholar 

  15. Petersen, E., et al.: Feature robustness and sex differences in medical imaging: a case study in MRI-based Alzheimer’s disease detection. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part I. LNCS, vol. 13431, pp. 88–98. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_9

    Chapter  Google Scholar 

  16. Sankar, A., Wu, Y., Gou, L., Zhang, W., Yang, H.: DySAT: deep neural representation learning on dynamic graphs via self-attention networks. In: Proceedings of the 13th International Conference on Web Search and Data Mining, pp. 519–527 (2020)

    Google Scholar 

  17. Seyfioğlu, M.S., et al.: Brain-aware replacements for supervised contrastive learning in detection of Alzheimer’s disease. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part I. LNCS, vol. 13431, pp. 461–470. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_44

    Chapter  Google Scholar 

  18. Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1), 273–289 (2002)

    Article  Google Scholar 

  19. Xiao, T., Zeng, L., Shi, X., Zhu, X., Wu, G.: Dual-graph learning convolutional networks for interpretable Alzheimer’s disease diagnosis. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part VIII. LNCS, vol. 13438, pp. 406–415. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_39

    Chapter  Google Scholar 

  20. Xu, L., et al.: Multi-modal sequence learning for Alzheimer’s disease progression prediction with incomplete variable-length longitudinal data. Med. Image Anal. 82, 102643 (2022)

    Article  Google Scholar 

  21. Yang, F., Meng, R., Cho, H., Wu, G., Kim, W.H.: Disentangled sequential graph autoencoder for preclinical Alzheimer’s disease characterizations from ADNI study. In: de Bruijne, M., et al. (eds.) MICCAI 2021, Part II. LNCS, vol. 12902, pp. 362–372. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_34

    Chapter  Google Scholar 

  22. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875 (2017)

  23. Zhang, S., et al.: 3D global Fourier network for Alzheimer’s disease diagnosis using structural MRI. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part I. LNCS, vol. 13431, pp. 34–43. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_4

    Chapter  Google Scholar 

  24. Zhu, J., Li, Y., Ding, L., Zhou, S.K.: Aggregative self-supervised feature learning from limited medical images. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part VIII. LNCS, vol. 13438, pp. 57–66. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_6

    Chapter  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 62076059), the Science Project of Liaoning Province (2021-MS-105) and the 111 Project (B16009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Cao or Jinzhu Yang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 20 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, W. et al. (2023). Modeling Alzheimers’ Disease Progression from Multi-task and Self-supervised Learning Perspective with Brain Networks. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14220. Springer, Cham. https://doi.org/10.1007/978-3-031-43907-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43907-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43906-3

  • Online ISBN: 978-3-031-43907-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics