Abstract
Alzheimer’s disease (AD) is a common irreversible neurodegenerative disease among elderlies. Establishing relationships between brain networks and cognitive scores plays a vital role in identifying the progression of AD. However, most of the previous works focus on a single time point, without modeling the disease progression with longitudinal brain networks data. Besides, the longitudinal data is insufficient for sufficiently modeling the predictive models. To address these issues, we propose a \(\pmb {\textrm{S}}\)elf-supervised \(\pmb {\textrm{M}}\)ulti-Task learning \(\pmb {\textrm{P}}\)rogression model SMP-Net for modeling the relationship between longitudinal brain networks and cognitive scores. Specifically, the proposed model is trained in a self-supervised way by designing a masked graph auto-encoder and a temporal contrastive learning that simultaneously learn the structural and evolutional features from the longitudinal brain networks. Furthermore, we propose a temporal multi-task learning paradigm to model the relationship among multiple cognitive scores prediction tasks. Experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset show the effectiveness of our method and achieve consistent improvements over state-of-the-art methods in terms of Mean Absolute Error (MAE), Pearson Correlation Coefficient (PCC) and Concordance Correlation Coefficient (CCC). Our code is available at https://github.com/IntelliDAL/Graph/tree/main/SMP-Net.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Aviles-Rivero, A.I., Runkel, C., Papadakis, N., Kourtzi, Z., Schönlieb, C.B.: Multi-modal hypergraph diffusion network with dual prior for Alzheimer classification. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part III. LNCS, vol. 13433, pp. 717–727. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_69
Brand, L., Wang, H., Huang, H., Risacher, S., Saykin, A., Shen, L.: Joint high-order multi-task feature learning to predict the progression of Alzheimer’s disease. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018, Part I. LNCS, vol. 11070, pp. 555–562. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_63
Chen, Z., Liu, Y., Zhang, Y., Li, Q., Initiative, A.D.N., et al.: Orthogonal latent space learning with feature weighting and graph learning for multimodal Alzheimer’s disease diagnosis. Med. Image Anal. 84, 102698 (2023)
Graves, A.: Long short-term memory. In: Graves, A. (ed.) Supervised Sequence Labelling with Recurrent Neural Networks. SCI, vol. 385, pp. 37–45. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24797-2_4
Huang, Y., Chung, A.C.: Disease prediction with edge-variational graph convolutional networks. Med. Image Anal. 77, 102375 (2022)
Jung, W., Jun, E., Suk, H.I., Initiative, A.D.N., et al.: Deep recurrent model for individualized prediction of Alzheimer’s disease progression. Neuroimage 237, 118143 (2021)
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)
Liang, W., Zhang, K., Cao, P., Liu, X., Yang, J., Zaiane, O.: Rethinking modeling Alzheimer’s disease progression from a multi-task learning perspective with deep recurrent neural network. Comput. Biol. Med. 138, 104935 (2021)
Liao, W., et al.: MUSCLE: multi-task self-supervised continual learning to pre-train deep models for X-ray images of multiple body parts. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part VIII. LNCS, vol. 13438, pp. 151–161. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_15
Logothetis, N.K.: What we can do and what we cannot do with fMRI. Nature 453(7197), 869–878 (2008)
Marinescu, R.V., et al.: Tadpole challenge: prediction of longitudinal evolution in Alzheimer’s disease. arXiv preprint arXiv:1805.03909 (2018)
Nguyen, H.D., Clément, M., Mansencal, B., Coupé, P.: Interpretable differential diagnosis for Alzheimer’s disease and frontotemporal dementia. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part I. LNCS, vol. 13431, pp. 55–65. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_6
Pareja, A., et al.: EvolveGCN: evolving graph convolutional networks for dynamic graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5363–5370 (2020)
Parisot, S., et al.: Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer’s disease. Med. Image Anal. 48, 117–130 (2018)
Petersen, E., et al.: Feature robustness and sex differences in medical imaging: a case study in MRI-based Alzheimer’s disease detection. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part I. LNCS, vol. 13431, pp. 88–98. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_9
Sankar, A., Wu, Y., Gou, L., Zhang, W., Yang, H.: DySAT: deep neural representation learning on dynamic graphs via self-attention networks. In: Proceedings of the 13th International Conference on Web Search and Data Mining, pp. 519–527 (2020)
Seyfioğlu, M.S., et al.: Brain-aware replacements for supervised contrastive learning in detection of Alzheimer’s disease. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part I. LNCS, vol. 13431, pp. 461–470. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_44
Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1), 273–289 (2002)
Xiao, T., Zeng, L., Shi, X., Zhu, X., Wu, G.: Dual-graph learning convolutional networks for interpretable Alzheimer’s disease diagnosis. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part VIII. LNCS, vol. 13438, pp. 406–415. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_39
Xu, L., et al.: Multi-modal sequence learning for Alzheimer’s disease progression prediction with incomplete variable-length longitudinal data. Med. Image Anal. 82, 102643 (2022)
Yang, F., Meng, R., Cho, H., Wu, G., Kim, W.H.: Disentangled sequential graph autoencoder for preclinical Alzheimer’s disease characterizations from ADNI study. In: de Bruijne, M., et al. (eds.) MICCAI 2021, Part II. LNCS, vol. 12902, pp. 362–372. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_34
Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875 (2017)
Zhang, S., et al.: 3D global Fourier network for Alzheimer’s disease diagnosis using structural MRI. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part I. LNCS, vol. 13431, pp. 34–43. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_4
Zhu, J., Li, Y., Ding, L., Zhou, S.K.: Aggregative self-supervised feature learning from limited medical images. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part VIII. LNCS, vol. 13438, pp. 57–66. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_6
Acknowledgements
This research was supported by the National Natural Science Foundation of China (No. 62076059), the Science Project of Liaoning Province (2021-MS-105) and the 111 Project (B16009).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Liang, W. et al. (2023). Modeling Alzheimers’ Disease Progression from Multi-task and Self-supervised Learning Perspective with Brain Networks. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14220. Springer, Cham. https://doi.org/10.1007/978-3-031-43907-0_30
Download citation
DOI: https://doi.org/10.1007/978-3-031-43907-0_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43906-3
Online ISBN: 978-3-031-43907-0
eBook Packages: Computer ScienceComputer Science (R0)