Adult-Like Phase and Multi-scale Assistance for Isointense Infant Brain Tissue Segmentation | SpringerLink
Skip to main content

Adult-Like Phase and Multi-scale Assistance for Isointense Infant Brain Tissue Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Precise brain tissue segmentation is crucial for infant development tracking and early brain disorder diagnosis. However, it remains challenging to automatically segment the brain tissues of a 6-month-old infant (isointense phase), even for manual labeling, due to inherent ongoing myelination during the first postnatal year. The intensity contrast between gray matter and white matter is extremely low in isointense MRI data. To resolve this problem, in this study, we propose a novel network with multi-phase data and multi-scale assistance to accurately segment the brain tissues of the isointense phase. Specifically, our framework consists of two main modules, i.e., semantics-preserved generative adversarial network (SPGAN) and Transformer-based multi-scale segmentation network (TMSN). SPAGN bi-directionally transfers the brain appearance between the isointense phase and the adult-like phase. On the one hand, the synthesized isointense phase data augments the isointense dataset. On the other hand, the synthesized adult-like images provide prior knowledge to the ambiguous tissue boundaries in the paired isointense phase data. TMSN integrates features of multi-phase image pairs in a multi-scale manner, which exploits both the adult-like phase data, with much clearer boundaries as structural prior, and the surrounding tissues, with a larger receptive field to assist the isointense data tissue segmentation. Extensive experiments on the public dataset show that our proposed framework achieves significant improvement over the state-of-the-art methods quantitatively and qualitatively.

J. Liu and F. Liu—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Avants, B.B., Tustison, N., Song, G., et al.: Advanced normalization tools (ants). Insight J. 2(365), 1–35 (2009)

    Google Scholar 

  2. Bui, T.D., Wang, L., Lin, W., Li, G., Shen, D.: 6-month infant brain MRI segmentation guided by 24-month data using cycle-consistent adversarial networks. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 359–362. IEEE (2020)

    Google Scholar 

  3. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  4. Fu, J., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)

    Google Scholar 

  5. Hall, D., Huerta, M.F., McAuliffe, M.J., Farber, G.K.: Sharing heterogeneous data: the national database for autism research. Neuroinformatics 10, 331–339 (2012)

    Article  Google Scholar 

  6. Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H.R., Xu, D.: Swin UNETR: swin transformers for semantic segmentation of brain tumors in MRI images. In: Crimi, A., Bakas, S. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. LNCS, vol. 12962. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08999-2_22

  7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  8. Liu, J., et al.: Multi-scale segmentation network for Rib fracture classification from CT images. In: Lian, C., Cao, X., Rekik, I., Xu, X., Yan, P. (eds.) MLMI 2021. LNCS, vol. 12966, pp. 546–554. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87589-3_56

    Chapter  Google Scholar 

  9. Nie, D., Wang, L., Gao, Y., Shen, D.: Fully convolutional networks for multi-modality isointense infant brain image segmentation. In: 2016 IEEE 13Th International Symposium on Biomedical Imaging (ISBI), pp. 1342–1345. IEEE (2016)

    Google Scholar 

  10. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: GauGAN: semantic image synthesis with spatially adaptive normalization. In: ACM SIGGRAPH 2019 Real-Time Live!, p. 1 (2019)

    Google Scholar 

  11. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32 (2019)

    Google Scholar 

  12. Payakachat, N., Tilford, J.M., Ungar, W.J.: National Database for Autism Research (NDAR): big data opportunities for health services research and health technology assessment. Pharmacoeconomics 34(2), 127–138 (2016)

    Article  Google Scholar 

  13. Prastawa, M., Gilmore, J.H., Lin, W., Gerig, G.: Automatic segmentation of MR images of the developing newborn brain. Med. Image Anal. 9(5), 457–466 (2005)

    Article  Google Scholar 

  14. Shi, F., Yap, P.T., Fan, Y., Gilmore, J.H., Lin, W., Shen, D.: Construction of multi-region-multi-reference atlases for neonatal brain MRI segmentation. Neuroimage 51(2), 684–693 (2010)

    Article  Google Scholar 

  15. Taha, A.A., Hanbury, A.: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med. Imaging 15(1), 1–28 (2015)

    Article  Google Scholar 

  16. Tierney, A.L., Nelson, C.A., III.: Brain development and the role of experience in the early years. Zero Three 30(2), 9 (2009)

    Google Scholar 

  17. Wang, L., et al.: Anatomy-guided joint tissue segmentation and topological correction for 6-month infant brain MRI with risk of autism. Hum. Brain Mapp. 39(6), 2609–2623 (2018)

    Article  Google Scholar 

  18. Wang, L., et al.: Benchmark on automatic six-month-old infant brain segmentation algorithms: the iSeg-2017 challenge. IEEE Trans. Med. Imaging 38(9), 2219–2230 (2019)

    Article  Google Scholar 

  19. Wang, L., et al.: Integration of sparse multi-modality representation and anatomical constraint for isointense infant brain MR image segmentation. Neuroimage 89, 152–164 (2014)

    Article  Google Scholar 

  20. Wang, L., et al.: Segmentation of neonatal brain MR images using patch-driven level sets. Neuroimage 84, 141–158 (2014)

    Article  Google Scholar 

  21. Wang, L., Shi, F., Yap, P.T., Gilmore, J.H., Lin, W., Shen, D.: 4D multi-modality tissue segmentation of serial infant images (2012)

    Google Scholar 

  22. Wang, R., Lei, T., Cui, R., Zhang, B., Meng, H., Nandi, A.K.: Medical image segmentation using deep learning: a survey. IET Image Proc. 16(5), 1243–1267 (2022)

    Article  Google Scholar 

  23. Wang, Z., Zou, N., Shen, D., Ji, S.: Non-local U-Nets for biomedical image segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 6315–6322 (2020)

    Google Scholar 

  24. Yang, H., et al.: Unpaired brain MR-to-CT synthesis using a structure-constrained CycleGAN. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 174–182. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_20

    Chapter  Google Scholar 

  25. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by National Natural Science Foundation of China (No. 62131015 and 62203355), and Science and Technology Commission of Shanghai Municipality (STCSM) (No. 21010502600), and The Key R &D Program of Guangdong Province, China (No. 2021B0101420006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinggang Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, J. et al. (2023). Adult-Like Phase and Multi-scale Assistance for Isointense Infant Brain Tissue Segmentation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14223. Springer, Cham. https://doi.org/10.1007/978-3-031-43901-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43901-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43900-1

  • Online ISBN: 978-3-031-43901-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics