Abstract
Precise brain tissue segmentation is crucial for infant development tracking and early brain disorder diagnosis. However, it remains challenging to automatically segment the brain tissues of a 6-month-old infant (isointense phase), even for manual labeling, due to inherent ongoing myelination during the first postnatal year. The intensity contrast between gray matter and white matter is extremely low in isointense MRI data. To resolve this problem, in this study, we propose a novel network with multi-phase data and multi-scale assistance to accurately segment the brain tissues of the isointense phase. Specifically, our framework consists of two main modules, i.e., semantics-preserved generative adversarial network (SPGAN) and Transformer-based multi-scale segmentation network (TMSN). SPAGN bi-directionally transfers the brain appearance between the isointense phase and the adult-like phase. On the one hand, the synthesized isointense phase data augments the isointense dataset. On the other hand, the synthesized adult-like images provide prior knowledge to the ambiguous tissue boundaries in the paired isointense phase data. TMSN integrates features of multi-phase image pairs in a multi-scale manner, which exploits both the adult-like phase data, with much clearer boundaries as structural prior, and the surrounding tissues, with a larger receptive field to assist the isointense data tissue segmentation. Extensive experiments on the public dataset show that our proposed framework achieves significant improvement over the state-of-the-art methods quantitatively and qualitatively.
J. Liu and F. Liu—These authors contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Avants, B.B., Tustison, N., Song, G., et al.: Advanced normalization tools (ants). Insight J. 2(365), 1–35 (2009)
Bui, T.D., Wang, L., Lin, W., Li, G., Shen, D.: 6-month infant brain MRI segmentation guided by 24-month data using cycle-consistent adversarial networks. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 359–362. IEEE (2020)
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49
Fu, J., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)
Hall, D., Huerta, M.F., McAuliffe, M.J., Farber, G.K.: Sharing heterogeneous data: the national database for autism research. Neuroinformatics 10, 331–339 (2012)
Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H.R., Xu, D.: Swin UNETR: swin transformers for semantic segmentation of brain tumors in MRI images. In: Crimi, A., Bakas, S. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. LNCS, vol. 12962. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08999-2_22
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Liu, J., et al.: Multi-scale segmentation network for Rib fracture classification from CT images. In: Lian, C., Cao, X., Rekik, I., Xu, X., Yan, P. (eds.) MLMI 2021. LNCS, vol. 12966, pp. 546–554. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87589-3_56
Nie, D., Wang, L., Gao, Y., Shen, D.: Fully convolutional networks for multi-modality isointense infant brain image segmentation. In: 2016 IEEE 13Th International Symposium on Biomedical Imaging (ISBI), pp. 1342–1345. IEEE (2016)
Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: GauGAN: semantic image synthesis with spatially adaptive normalization. In: ACM SIGGRAPH 2019 Real-Time Live!, p. 1 (2019)
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32 (2019)
Payakachat, N., Tilford, J.M., Ungar, W.J.: National Database for Autism Research (NDAR): big data opportunities for health services research and health technology assessment. Pharmacoeconomics 34(2), 127–138 (2016)
Prastawa, M., Gilmore, J.H., Lin, W., Gerig, G.: Automatic segmentation of MR images of the developing newborn brain. Med. Image Anal. 9(5), 457–466 (2005)
Shi, F., Yap, P.T., Fan, Y., Gilmore, J.H., Lin, W., Shen, D.: Construction of multi-region-multi-reference atlases for neonatal brain MRI segmentation. Neuroimage 51(2), 684–693 (2010)
Taha, A.A., Hanbury, A.: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med. Imaging 15(1), 1–28 (2015)
Tierney, A.L., Nelson, C.A., III.: Brain development and the role of experience in the early years. Zero Three 30(2), 9 (2009)
Wang, L., et al.: Anatomy-guided joint tissue segmentation and topological correction for 6-month infant brain MRI with risk of autism. Hum. Brain Mapp. 39(6), 2609–2623 (2018)
Wang, L., et al.: Benchmark on automatic six-month-old infant brain segmentation algorithms: the iSeg-2017 challenge. IEEE Trans. Med. Imaging 38(9), 2219–2230 (2019)
Wang, L., et al.: Integration of sparse multi-modality representation and anatomical constraint for isointense infant brain MR image segmentation. Neuroimage 89, 152–164 (2014)
Wang, L., et al.: Segmentation of neonatal brain MR images using patch-driven level sets. Neuroimage 84, 141–158 (2014)
Wang, L., Shi, F., Yap, P.T., Gilmore, J.H., Lin, W., Shen, D.: 4D multi-modality tissue segmentation of serial infant images (2012)
Wang, R., Lei, T., Cui, R., Zhang, B., Meng, H., Nandi, A.K.: Medical image segmentation using deep learning: a survey. IET Image Proc. 16(5), 1243–1267 (2022)
Wang, Z., Zou, N., Shen, D., Ji, S.: Non-local U-Nets for biomedical image segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 6315–6322 (2020)
Yang, H., et al.: Unpaired brain MR-to-CT synthesis using a structure-constrained CycleGAN. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 174–182. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_20
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)
Acknowledgment
This work was supported in part by National Natural Science Foundation of China (No. 62131015 and 62203355), and Science and Technology Commission of Shanghai Municipality (STCSM) (No. 21010502600), and The Key R &D Program of Guangdong Province, China (No. 2021B0101420006).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, J. et al. (2023). Adult-Like Phase and Multi-scale Assistance for Isointense Infant Brain Tissue Segmentation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14223. Springer, Cham. https://doi.org/10.1007/978-3-031-43901-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-43901-8_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43900-1
Online ISBN: 978-3-031-43901-8
eBook Packages: Computer ScienceComputer Science (R0)