FocalUNETR: A Focal Transformer for Boundary-Aware Prostate Segmentation Using CT Images | SpringerLink
Skip to main content

FocalUNETR: A Focal Transformer for Boundary-Aware Prostate Segmentation Using CT Images

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Computed Tomography (CT) based precise prostate segmentation for treatment planning is challenging due to (1) the unclear boundary of the prostate derived from CT’s poor soft tissue contrast and (2) the limitation of convolutional neural network-based models in capturing long-range global context. Here we propose a novel focal transformer-based image segmentation architecture to effectively and efficiently extract local visual features and global context from CT images. Additionally, we design an auxiliary boundary-induced label regression task coupled with the main prostate segmentation task to address the unclear boundary issue in CT images. We demonstrate that this design significantly improves the quality of the CT-based prostate segmentation task over other competing methods, resulting in substantially improved performance, i.e., higher Dice Similarity Coefficient, lower Hausdorff Distance, and Average Symmetric Surface Distance, on both private and public CT image datasets. Our code is available at this link.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11210
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14013
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cao, H., et al.: Swin-unet: unet-like pure transformer for medical image segmentation. arXiv preprint arXiv:2105.05537 (2021)

  2. Chen, J., et al.: Transunet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  3. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  4. D’Amico, A.V.: Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. Jama 280(11), 969–974 (1998)

    Article  Google Scholar 

  5. Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. In: ICLR (2021). arXiv:2010.11929

  6. Hatamizadeh, A., et al.: Unetr: transformers for 3d medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 574–584 (2022)

    Google Scholar 

  7. He, K., et al.: Hf-unet: learning hierarchically inter-task relevance in multi-task u-net for accurate prostate segmentation in ct images. IEEE Trans. Med. Imaging 40(8), 2118–2128 (2021)

    Article  Google Scholar 

  8. Isensee, F., Jäger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: Automated design of deep learning methods for biomedical image segmentation. arXiv preprint arXiv:1904.08128 (2019)

  9. Ji, Y., et al.: Amos: a large-scale abdominal multi-organ benchmark for versatile medical image segmentation. arXiv preprint arXiv:2206.08023 (2022)

  10. Li, X., et al.: An uncertainty-aware deep learning architecture with outlier mitigation for prostate gland segmentation in radiotherapy treatment planning. Med. Phys. 50(1), 311–322 (2023)

    Article  Google Scholar 

  11. Lin, L., et al.: BSDA-Net: a boundary shape and distance aware joint learning framework for segmenting and classifying OCTA images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 65–75. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_7

    Chapter  Google Scholar 

  12. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  13. Ma, J., et al.: How distance transform maps boost segmentation cnns: an empirical study. In: Medical Imaging with Deep Learning, pp. 479–492. PMLR (2020)

    Google Scholar 

  14. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  15. Murugesan, B., Sarveswaran, K., Shankaranarayana, S.M., Ram, K., Joseph, J., Sivaprakasam, M.: Psi-net: shape and boundary aware joint multi-task deep network for medical image segmentation. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 7223–7226. IEEE (2019)

    Google Scholar 

  16. Oktay, O., et al.: Attention u-net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  17. Parikesit, D., Mochtar, C.A., Umbas, R., Hamid, A.R.A.H.: The impact of obesity towards prostate diseases. Prostate Int. 4(1), 1–6 (2016)

    Article  Google Scholar 

  18. Qiang, Y., Pan, D., Li, C., Li, X., Jang, R., Zhu, D.: Attcat: explaining transformers via attentive class activation tokens. Adv. Neural Inf. Process. Syst. 35, 5052–5064 (2022)

    Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Tang, Y., et al.: Self-supervised pre-training of swin transformers for 3d medical image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20730–20740 (2022)

    Google Scholar 

  21. Valanarasu, J.M.J., Oza, P., Hacihaliloglu, I., Patel, V.M.: Medical transformer: gated axial-attention for medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 36–46. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_4

    Chapter  Google Scholar 

  22. Wang, S., Liu, M., Lian, J., Shen, D.: Boundary coding representation for organ segmentation in prostate cancer radiotherapy. IEEE Trans. Med. Imaging 40(1), 310–320 (2020)

    Article  Google Scholar 

  23. Xiao, X., Lian, S., Luo, Z., Li, S.: Weighted res-unet for high-quality retina vessel segmentation. In: 2018 9th International Conference on Information Technology in Medicine and Education (ITME), pp. 327–331. IEEE (2018)

    Google Scholar 

  24. Yang, J., et al.: Focal self-attention for local-global interactions in vision transformers. arXiv preprint arXiv:2107.00641 (2021)

  25. Zhang, Y., Liu, H., Hu, Q.: TransFuse: fusing transformers and CNNs for medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 14–24. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_2

    Chapter  Google Scholar 

  26. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongxiao Zhu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 517 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, C. et al. (2023). FocalUNETR: A Focal Transformer for Boundary-Aware Prostate Segmentation Using CT Images. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14222. Springer, Cham. https://doi.org/10.1007/978-3-031-43898-1_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43898-1_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43897-4

  • Online ISBN: 978-3-031-43898-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics