Modelling of Hot Water Buffer Tank and Mixing Loop for an Intelligent Heat Pump Control | SpringerLink
Skip to main content

Modelling of Hot Water Buffer Tank and Mixing Loop for an Intelligent Heat Pump Control

  • Conference paper
  • First Online:
Formal Methods for Industrial Critical Systems (FMICS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14290))

Abstract

The recent surge in electricity prices has increased the demand for cost-effective and sophisticated heat pump controllers. As domestic floor heating systems are becoming increasingly popular, there is an urgent need for more efficient control systems that include also heat buffer tanks to account for fluctuating energy prices. We propose a scalable thermal model of the hot water buffer tank together with a mixing loop and evaluate its operation and performance on an experimental Danish house from the OpSys project. We experimentally assess the buffer tank’s quality by selecting the proper size and number of virtual layers using an industry-standard controller. Finally, we integrate the buffer tank and mixing loop into the heating system and create an intelligent Stratego controller to examine their performance. We analyze the tradeoff between cost and comfort for different buffer tank sizes to determine when a buffer tank or a mixing loop should be included in the system. By providing a detailed understanding of the buffer tank and mixing loop, our study enables the clients to make better decisions regarding the appropriate buffer tank size and when to install a mixing loop based on their specific heating needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6634
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8293
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Energy consumption in households, April 2023. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_consumption_in_households

  2. Daryabari, M.K., Keypour, R., Golmohamadi, H.: Stochastic energy management of responsive plug-in electric vehicles characterizing parking lot aggregators. Appl. Energy 279, 115751 (2020)

    Article  Google Scholar 

  3. Agesen, M.K., et al.: Toolchain for user-centered intelligent floor heating control. In: IECON 2016–42nd Annual Conference of the IEEE Industrial Electronics Society, pp. 5296–5301 (2016)

    Google Scholar 

  4. Larsen, K.G., Mikučionis, M., Muñiz, M., Srba, J., Taankvist, J.H.: Online and compositional learning of controllers with application to floor heating. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 244–259. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9_14

    Chapter  Google Scholar 

  5. Vogler-Finck, P.J.C., Wisniewski, R., Popovski, P.: Reducing the carbon footprint of house heating through model predictive control - a simulation study in Danish conditions. Sustain. Cities Soc. 42, 558–573 (2018)

    Article  Google Scholar 

  6. Hasrat, I.R., Jensen, P.G., Larsen, K.G., Srba, J.: End-to-end heat-pump control using continuous time stochastic modelling and uppaal stratego. In: Aït-Ameur, Y., Crăciun, F. (eds.) TASE 2022. LNCS, vol. 13299, pp. 363–380. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10363-6_24

    Chapter  Google Scholar 

  7. Juhl, R., Møller, J.K., Madsen, H.: CTSMR - Continuous Time Stochastic Modeling in R. arXiv (2016)

    Google Scholar 

  8. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal Stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 206–211. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_16

  9. Hermansen, R., Smith, K., Thorsen, J.E., Wang, J., Zong, Y.: Model predictive control for a heat booster substation in ultra low temperature district heating systems. Energy 238, 121631 (2022)

    Article  Google Scholar 

  10. Sepulveda, A., Paull, L., Morsi, W.G., Li, H., Diduch, C.P., Chang, L.: A novel demand side management program using water heaters and particle swarm optimization. In: 2010 IEEE Electrical Power and Energy Conference, pp. 1–5. IEEE (2010)

    Google Scholar 

  11. Paull, L., MacKay, D., Li, H., Chang, L.: Awater heater model for increased power system efficiency. In: 2009 Canadian Conference on Electrical and Computer Engineering, pp. 731–734. IEEE (2009)

    Google Scholar 

  12. Lu, S., et al.: Centralized and decentralized control for demand response. In: ISGT 2011, pp. 1–8. IEEE (2011)

    Google Scholar 

  13. Nehrir, M.H., Jia, R., Pierre, D.A., Hammerstrom, D.J.: Power management of aggregate electric water heater loads by voltage control. In: 2007 IEEE Power Engineering Society General Meeting, pp. 1–6. IEEE (2007)

    Google Scholar 

  14. Hock, C., Goh, K., Apt, J.: Consumer strategies for controlling electric water heaters under dynamic pricing. In: Carnegie Mellon Electricity Industry Center Working Paper (2004)

    Google Scholar 

  15. Dolan, P.S., Nehrir, M.H., Gerez, V.: Development of a Monte Carlo based aggregate model for residential electric water heater loads. Electr. Power Syst. Res. 36(1), 29–35 (1996)

    Article  Google Scholar 

  16. Laurent, J.C., Malhame, R.P.: A physically-based computer model of aggregate electric water heating loads. IEEE Trans. Power Syst. 9(3), 1209–1217 (1994)

    Article  Google Scholar 

  17. Lane, I.E., Beute, N.: A model of the domestic hot water load. IEEE Trans. Power Syst. 11(4), 1850–1855 (1996)

    Article  Google Scholar 

  18. Jia, R., Nehrir, M.H., Pierre, D.A.: Voltage control of aggregate electric water heater load for distribution system peak load shaving using field data. In: 2007 39th North American Power Symposium, pp. 492–497 (2007)

    Google Scholar 

  19. Elgazzar, K., Li, H., Chang, L.: A centralized fuzzy controller for aggregated control of domestic water heaters. In: 2009 Canadian Conference on Electrical and Computer Engineering, pp. 1141–1146. IEEE (2009)

    Google Scholar 

  20. Paull, L., Li, H., Chang, L.: A novel domestic electric water heater model for a multi-objective demand side management program. Electr. Power Syst. Res. 80(12), 1446–1451 (2010)

    Article  Google Scholar 

  21. Kondoh, J., Lu, N., Hammerstrom, D.J.: An evaluation of the water heater load potential for providing regulation service. In: 2011 IEEE Power and Energy Society General Meeting, pp. 1–8. IEEE (2011)

    Google Scholar 

  22. Diao, R., Lu, S., Elizondo, M., Mayhorn, E., Zhang, Y., Samaan, N.: Electric water heater modeling and control strategies for demand response. In: 2012 IEEE Power and Energy Society General Meeting, pp. 1–8. IEEE (2012)

    Google Scholar 

  23. Yang, X., Svendsen, S.: Improving the district heating operation by innovative layout and control strategy of the hot water storage tank. Energy Build. 224, 110273 (2020)

    Article  Google Scholar 

  24. Farooq, A.A., Afram, A., Schulz, N., Janabi-Sharifi, F.: Grey-box modeling of a low pressure electric boiler for domestic hot water system. Appl. Thermal Eng. 84, 257–267 (2015)

    Google Scholar 

  25. Furbo, S.: Heat storage for solar heating systems. Educational Note, BYG.DTU U-071, ISSN 1396-4046 (2005)

    Google Scholar 

  26. Hessam Golmohamadi and Kim Guldstrand Larsen: Economic heat control of mixing loop for residential buildings supplied by low-temperature district heating. J. Build. Eng. 46, 103286 (2022)

    Article  Google Scholar 

  27. Overgaard, A., Nielsen, B.K., Kallesøe, C.S., Bendtsen, J.D.: Reinforcement learning for mixing loop control with flow variable eligibility trace. In: 2019 IEEE Conference on Control Technology and Applications (CCTA), pp. 1043–1048 (2019)

    Google Scholar 

  28. Volkova, A., et al.: Energy cascade connection of a low-temperature district heating network to the return line of a high-temperature district heating network. Energy 198, 117304 (2020)

    Article  Google Scholar 

  29. Meesenburg, W., Ommen, T., Thorsen, J.E., Elmegaard, B.: Economic feasibility of ultra-low temperature district heating systems in newly built areas supplied by renewable energy. Energy 191, 116496 (2020)

    Google Scholar 

  30. Rahmatmand, A., Vratonjic, M., Sullivan, P.E.: Energy and thermal comfort performance evaluation of thermostatic and electronic mixing valves used to provide domestic hot water of buildings. Energy Build. 212, 109830 (2020)

    Article  Google Scholar 

  31. Jensen, S.Ø.: OPSYS tools for investigating energy flexibility in houses with heat pumps (2018). https://www.annex67.org/media/1838/report-opsys-flexibilitet.pdf

  32. Dayssault systems. dymola (dynamic modeling laboratory) systems engineering), October 2022. https://www.3ds.com/products-services/catia/products/dymola/

  33. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. J. Softw. Tools Technol. Transf. 1(1-2), 134–152 (1997)

    Google Scholar 

  34. Behrmann, G., et al.: Uppaal 4.0. IEEE Computer Society (2006)

    Google Scholar 

  35. Bulychev, P., Legay, A., Wang, Z.: Uppaal-SMC: statistical model checking for priced timed automata. arXiv preprint arXiv:1207.1272 (2012)

  36. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.: UPPAAL-Tiga: time for playing games! In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73368-3_14

    Chapter  Google Scholar 

  37. Jensen, P.G., Larsen, K.G., Legay, A., Nyman, U.: Integrating tools: co-simulation in Uppaal using FMI-FMU. In: 2017 22nd International Conference on Engineering of Complex Computer Systems (ICECCS), pp. 11–19. IEEE (2017)

    Google Scholar 

  38. Hasrat, I.R., Jensen, P.G., Larsen, K.G., Srba, J.: Complete Uppaal Stratego model for “modelling of hot water buffer tank and mixing loop for an intelligent heat pump control", May 2023. https://github.com/ImranRiazAAU/BufferTankModelling.git

  39. Control technology: weather compensated controls (Viessmann: climate of innovation) (2023). https://viessmanndirect.co.uk/files//8e57dbc7-8a10-4065-bcc6-a27700ee752a/weather_comp.pdf

Download references

Acknowledgements

We would like to thank Per Printz Madsen and Hessam Golmohammadi for their extensive help in understanding the physics of the buffer tanks. This research is partly funded by the ERC Advanced Grant Lasso, the Villum Investigator Grant S4OS, and DIREC: Digital Research Centre Denmark.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran Riaz Hasrat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hasrat, I.R., Jensen, P.G., Larsen, K.G., Srba, J. (2023). Modelling of Hot Water Buffer Tank and Mixing Loop for an Intelligent Heat Pump Control. In: Cimatti, A., Titolo, L. (eds) Formal Methods for Industrial Critical Systems. FMICS 2023. Lecture Notes in Computer Science, vol 14290. Springer, Cham. https://doi.org/10.1007/978-3-031-43681-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43681-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43680-2

  • Online ISBN: 978-3-031-43681-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics