Abstract
Many machine learning (ML) libraries are accessible online for ML practitioners. Typical ML pipelines are complex and consist of a series of steps, each of them invoking several ML libraries. In this demo paper, we present ExeKGLib, a Python library that allows users with coding skills and minimal ML knowledge to build ML pipelines. ExeKGLib relies on knowledge graphs to improve the transparency and reusability of the built ML workflows, and to ensure that they are executable. We demonstrate the usage of ExeKGLib and compare it with conventional ML code to show ExeKGLib ’s benefits.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
References
Abreu, P.H., Santos, M.S., Abreu, M.H., Andrade, B., Silva, D.C.: Predicting breast cancer recurrence using machine learning techniques: a systematic review. ACM Comput. Surv. 49(3), 52:1–52:40 (2016). https://doi.org/10.1145/2988544
Bartschat, A., Reischl, M., Mikut, R.: Data mining tools. Wiley Interdisc. Rev. Data Min. Knowl. Disc. 9(4), e1309 (2019). https://doi.org/10.1002/widm.1309
Heidrich, B., et al.: pyWATTS: python workflow automation tool for time series. arXiv preprint arXiv:2106.10157 (2021). https://doi.org/10.48550/arXiv.2106.10157
Huang, Z., Fey, M., Liu, C., Beysel, E., Xu, X., Brecher, C.: Hybrid learning-based digital twin for manufacturing process: modeling framework and implementation. Robot. Comput.-Integr. Manuf. 82, 102545 (2023). https://doi.org/10.1016/j.rcim.2023.102545
Kim, J., Ahn, I.: Infectious disease outbreak prediction using media articles with machine learning models. Sci. Rep. 11(1), 4413 (2021). https://doi.org/10.1038/s41598-021-83926-2
Kourou, K., Exarchos, T.P., Exarchos, K.P., Karamouzis, M.V., Fotiadis, D.I.: Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotech. J. 13, 8–17 (2015). https://doi.org/10.1016/j.csbj.2014.11.005
Libbrecht, M.W., Noble, W.S.: Machine learning applications in genetics and genomics. Nat. Rev. Genet. 16(6), 321–332 (2015). https://doi.org/10.1038/nrg3920
Meng, L., et al.: Machine learning in additive manufacturing: a review. JOM 72(6), 2363–2377 (2020). https://doi.org/10.1007/s11837-020-04155-y
Mikut, R., et al.: The MATLAB toolbox SciXMiner: user’s manual and programmer’s guide. arXiv preprint arXiv:1704.03298 (2017). https://doi.org/10.48550/arXiv.1704.03298
Obulesu, O., Mahendra, M., ThrilokReddy, M.: Machine learning techniques and tools: a survey. In: 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), pp. 605–611. IEEE (2018). https://doi.org/10.1109/ICIRCA.2018.8597302
Sarker, I.H.: Machine learning: algorithms, real-world applications and research directions. SN Comput. Sci. 2(3), 1–21 (2021). https://doi.org/10.1007/s42979-021-00592-x
Zeng, L., Al-Rifai, M., Chelaru, S., Nolting, M., Nejdl, W.: On the importance of contextual information for building reliable automated driver identification systems. In: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), pp. 1–8. IEEE (2020). https://doi.org/10.1109/ITSC45102.2020.9294439
Zheng, Z., et al.: Executable knowledge graphs for machine learning: a Bosch case of welding monitoring. In: Sattler, U., et al. The Semantic Web - ISWC 2022. ISWC 2022, LNCS, vol. 13489, pp. 791–809. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19433-7_45
Acknowledgements
The work was partially supported by EU projects Dome 4.0 (GA 953163), OntoCommons (GA 958371), DataCloud (GA 101016835), Graph Massiviser (GA 101093202), and EnRichMyData (GA 101093202).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Klironomos, A. et al. (2023). ExeKGLib: Knowledge Graphs-Empowered Machine Learning Analytics. In: Pesquita, C., et al. The Semantic Web: ESWC 2023 Satellite Events. ESWC 2023. Lecture Notes in Computer Science, vol 13998. Springer, Cham. https://doi.org/10.1007/978-3-031-43458-7_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-43458-7_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43457-0
Online ISBN: 978-3-031-43458-7
eBook Packages: Computer ScienceComputer Science (R0)