Abstract
The study of nonplanar graph drawings with forbidden or desired crossing configurations has a long tradition in geometric graph theory, and received an increasing attention in the last two decades, under the name of beyond-planar graph drawing. In this context, we introduce a new hierarchy of graph families, called \(k^+\)-real face graphs. For any integer \(k \ge 1\), a graph G is a \(k^+\)-real face graph if it admits a drawing \(\varGamma \) in the plane such that the boundary of each face (formed by vertices, crossings, and edges) contains at least k vertices of G. We give tight upper bounds on the maximum number of edges of \(k^+\)-real face graphs. In particular, we show that \(1^+\)-real face and \(2^+\)-real face graphs with n vertices have at most \(5n-10\) and \(4n-8\) edges, respectively. Also, if all vertices are constrained to be on the boundary of the external face, then \(1^+\)-real face and \(2^+\)-real face graphs have at most \(3n-6\) and \(2.5n-4\) edges, respectively. We also study relationships between \(k^+\)-real face graphs and beyond-planar graph families with hereditary property.
Research started at the Summer Workshop on Graph Drawing (SWGD) 2022, and partially supported by: (i) MIUR, grant 20174LF3T8 “AHeAD: efficient Algorithms for HArnessing networked Data”; (ii) Dipartimento di Ingegneria - Università degli Studi di Perugia, Ricerca di Base, grants RICBA21LG and RICBA22CB.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ackerman, E.: On the maximum number of edges in topological graphs with no four pairwise crossing edges. Discret. Comput. Geom. 41(3), 365–375 (2009). https://doi.org/10.1007/s00454-009-9143-9
Ackerman, E.: On topological graphs with at most four crossings per edge. Comput. Geom. 85 (2019). https://doi.org/10.1016/j.comgeo.2019.101574
Ackerman, E., Fulek, R., Tóth, C.D.: On the size of graphs that admit polyline drawings with few bends and crossing angles. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 1–12. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18469-7_1
Ackerman, E., Tardos, G.: On the maximum number of edges in quasi-planar graphs. J. Comb. Theory Ser. A 114(3), 563–571 (2007). https://doi.org/10.1016/j.jcta.2006.08.002
Ali, P., Dankelmann, P., Mukwembi, S.: The radius of \(k\)-connected planar graphs with bounded faces. Discret. Math. 312(24), 3636–3642 (2012). https://doi.org/10.1016/j.disc.2012.08.019
Alon, N., Erdős, P.: Disjoint edges in geometric graphs. Discret. Comput. Geom. 4, 287–290 (1989). https://doi.org/10.1007/BF02187731
Angelini, P., et al.: Simple k-planar graphs are simple (k+1)-quasiplanar. J. Comb. Theory Ser. B 142, 1–35 (2020). https://doi.org/10.1016/j.jctb.2019.08.006
Auer, C., et al.: Outer 1-planar graphs. Algorithmica 74(4), 1293–1320 (2016). https://doi.org/10.1007/s00453-015-0002-1
Avital, S., Hanani, H.: Graphs. Gilyonot Lematematika 3, 2–8 (1966)
Bekos, M.A., Cornelsen, S., Grilli, L., Hong, S., Kaufmann, M.: On the recognition of fan-planar and maximal outer-fan-planar graphs. Algorithmica 79(2), 401–427 (2017). https://doi.org/10.1007/s00453-016-0200-5
Bekos, M.A., Kaufmann, M., Raftopoulou, C.N.: On optimal 2- and 3-planar graphs. In: SoCG. LIPIcs, vol. 77, pp. 16:1–16:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017). https://doi.org/10.4230/LIPIcs.SoCG.2017.16
Binucci, C., et al.: Algorithms and characterizations for 2-layer fan-planarity: from caterpillar to stegosaurus. J. Graph Algorithms Appl. 21(1), 81–102 (2017). https://doi.org/10.7155/jgaa.00398
Binucci, C., et al.: Fan-planarity: properties and complexity. Theor. Comput. Sci. 589, 76–86 (2015). https://doi.org/10.1016/j.tcs.2015.04.020
Bodendiek, R., Schumacher, H., Wagner, K.: Über 1-optimale graphen. Math. Nachr. 117, 323–339 (1984)
Bollobás, B.: Extremal Graph Theory. Academic Press, New York (1978)
Bose, P., Kirkpatrick, D.G., Li, Z.: Worst-case-optimal algorithms for guarding planar graphs and polyhedral surfaces. Comput. Geom. 26(3), 209–219 (2003). https://doi.org/10.1016/S0925-7721(03)00027-0
Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Hoboken (1999)
Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H.: Area, curve complexity, and crossing resolution of non-planar graph drawings. Theory Comput. Syst. 49(3), 565–575 (2011). https://doi.org/10.1007/s00224-010-9275-6
Didimo, W.: Density of straight-line 1-planar graph drawings. Inf. Process. Lett. 113(7), 236–240 (2013). https://doi.org/10.1016/j.ipl.2013.01.013
Didimo, W.: Right angle crossing drawings of graphs. In: Hong, S.-H., Tokuyama, T. (eds.) Beyond Planar Graphs, pp. 149–169. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-6533-5_9
Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. Theor. Comput. Sci. 412(39), 5156–5166 (2011). https://doi.org/10.1016/j.tcs.2011.05.025
Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond planarity. ACM Comput. Surv. 52(1), 4:1–4:37 (2019). https://doi.org/10.1145/3301281
Du Preez, B.: Plane graphs with large faces and small diameter. Australas. J. Comb. 80(3), 401–418 (2021)
Dujmovic, V., Gudmundsson, J., Morin, P., Wolle, T.: Notes on large angle crossing graphs. Chicago J. Theor. Comput. Sci. 2011 (2011)
Hong, S.-H.: Beyond planar graphs: introduction. In: Hong, S.-H., Tokuyama, T. (eds.) Beyond Planar Graphs, pp. 1–9. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-6533-5_1
Hong, S., Eades, P., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear-time algorithm for testing outer-1-planarity. Algorithmica 72(4), 1033–1054 (2015). https://doi.org/10.1007/s00453-014-9890-8
Hong, S., Kaufmann, M., Kobourov, S.G., Pach, J.: Beyond-planar graphs: algorithmics and combinatorics (Dagstuhl Seminar 16452). Dagstuhl Rep. 6(11), 35–62 (2016). https://doi.org/10.4230/DagRep.6.11.35
Kobourov, S.G., Liotta, G., Montecchiani, F.: An annotated bibliography on 1-planarity. Comput. Sci. Rev. 25, 49–67 (2017). https://doi.org/10.1016/j.cosrev.2017.06.002
Kupitz, Y.S.: Extremal problems in combinatorial geometry. Lecture notes series, Matematisk institut, Aarhus universitet (1979)
Lan, Y., Shi, Y., Song, Z.: Extremal \(h\)-free planar graphs. Electron. J. Comb. 26(2), 2 (2019). https://doi.org/10.37236/8255
Pach, J.: Geometric graph theory. In: Handbook of Discrete and Computational Geometry, 2nd edn., pp. 219–238. Chapman and Hall/CRC (2004). https://doi.org/10.1201/9781420035315.ch10
Pach, J., Radoicic, R., Tardos, G., Tóth, G.: Improving the crossing lemma by finding more crossings in sparse graphs. Discret. Computat. Geom. 36(4), 527–552 (2006). https://doi.org/10.1007/s00454-006-1264-9
Pach, J., Töröcsik, J.: Some geometric applications of Dilworth’s theorem. Discret. Comput. Geom. 12, 1–7 (1994). https://doi.org/10.1007/BF02574361
Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439 (1997). https://doi.org/10.1007/BF01215922
Suk, A., Walczak, B.: New bounds on the maximum number of edges in \(k\)-quasi-planar graphs. Comput. Geom. 50, 24–33 (2015). https://doi.org/10.1016/j.comgeo.2015.06.001
Suzuki, Y.: 1-planar graphs. In: Hong, S.-H., Tokuyama, T. (eds.) Beyond Planar Graphs, pp. 47–68. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-6533-5_4
Acknowledgments
We thank Vida Dujmović for valuable discussion.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Binucci, C. et al. (2023). Nonplanar Graph Drawings with k Vertices per Face. In: Paulusma, D., Ries, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2023. Lecture Notes in Computer Science, vol 14093. Springer, Cham. https://doi.org/10.1007/978-3-031-43380-1_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-43380-1_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43379-5
Online ISBN: 978-3-031-43380-1
eBook Packages: Computer ScienceComputer Science (R0)