Energy Efficient Software in an Engineering Course | SpringerLink
Skip to main content

Energy Efficient Software in an Engineering Course

  • Conference paper
  • First Online:
Composability, Comprehensibility and Correctness of Working Software (CEFP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 11950))

Included in the following conference series:

  • 209 Accesses

Abstract

Sustainable development has become an increasingly important theme not only in the world politics, but also an increasingly central theme for the engineering professions around the world. Software engineers are no exception as shown in various recent research studies. Despite the intensive research on green software, today’s undergraduate computing education often fails to address our environmental responsibility.

In this paper, we present a module on energy efficient software that we introduced as part of an advanced course on software analysis and testing. In this module students study techniques and tools to analyze and optimize energy consumption of software systems. Preliminary results of the first four instances of this course show that students are able to optimize the energy consumption of software systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7549
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9437
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://conf.researchr.org/series/ict4s.

  2. 2.

    https://www.igscc.org/.

  3. 3.

    https://greens.cs.vu.nl/.

  4. 4.

    http://birgit.penzenstadler.de/re4susy/.

  5. 5.

    https://sites.google.com/view/sustainablese-workshop/home.

  6. 6.

    http://greenlab.di.uminho.pt/.

  7. 7.

    The ACM Special Interest Group on Programming Languages.

  8. 8.

    The ACM Special Interest Group on Computer Science Education.

  9. 9.

    http://stackoverflow.com.

  10. 10.

    CS 7333 - Advanced Green Computing, https://cs.txstate.edu/academics/course_detail/CS/7333/.

  11. 11.

    https://vuweb.vu.nl/en/education/master/computer-science.

  12. 12.

    http://www.odroid.com.

  13. 13.

    http://code.google.com/p/caliper/.

  14. 14.

    https://www.jetbrains.com/idea/.

  15. 15.

    Actually, modern Java IDEs, such as IntelliJ, offer this transformation as a predefined refactoring.

References

  1. Pinto, G., Castor, F.: Energy efficiency: a new concern for application software developers. Commun. ACM 60(12), 68–75 (2017)

    Article  Google Scholar 

  2. Pereira, R., Simão, P., Cunha, J., Saraiva, J.: jStanley: placing a green thumb on java collections. In: Proceedings of the 33rd ACM/IEEE Int. Conference on Automated Software Engineering, ASE 2018, ACM, New York, NY, USA, pp. 856–859 (2018). http://doi.acm.org/10.1145/3238147.3240473

  3. Hasan, S., King, Z., Hafiz, M., Sayagh, M., Adams, B., Hindle, A.: Energy profiles of Java collections classes. In: Proceedings of the 38th International Conference on Software Engineering, pp. 225–236. ACM (2016). https://doi.org/10.1145/2884781.2884869

  4. Oliveira, W., Oliveira, R., Castor, F., Fernandes, B., Pinto, G.: Recommending energy-efficient Java collections. In: Proceedings of the 16th International Conference on Mining Software Repositories, MSR 2019, pp. 160–170. IEEE Press (2019). https://doi.org/10.1109/MSR.2019.00033

  5. Pereira, R., Couto, M., Saraiva, J., Cunha, J., Fernandes, J.P.: The influence of the Java collection framework on overall energy consumption. In: Proceedings of the 5th International Workshop on Green and Sustainable Software, GREENS 2016, pp. 15–21. ACM (2016). https://doi.org/10.1145/2896967.2896968

  6. Linares-Vásquez, M., Bavota, G., Bernal-Cárdenas, C., Oliveto, R. Di Penta, M., Poshyvanyk, D.: Mining energy-greedy API usage patterns in android apps: an empirical study. In: Proceedings of the 11th Working Conference on Mining Software Repositories, pp. 2–11. ACM (2014). https://doi.org/10.1145/2597073.2597085

  7. Anwar, H., Demirer, B., Pfahl, D., Srirama, S.: Should energy consumption influence the choice of android third-party http libraries? In: Proceedings of the IEEE/ACM 7th International Conference on Mobile Software Engineering and Systems, MOBILESoft 2020, New York, NY, USA, pp. 87–97. Association for Computing Machinery (2020). https://doi.org/10.1145/3387905.3392095

  8. Pereira, R., et al.: Energy efficiency across programming languages: how do energy, time, and memory relate? In: Proceedings of the 10th ACM SIGPLAN International Conference on Software Language Engineering, SLE 2017, New York, NY, USA, pp. 256–267. ACM (2017). http://doi.acm.org/10.1145/3136014.3136031

  9. Cruz, L., Abreu, R.: Performance-based guidelines for energy efficient mobile applications. In: Proceedings of the 4th International Conference on Mobile Software Engineering and Systems, MOBILESoft 2017, Piscataway, NJ, USA, 2017, pp. 46–57. IEEE Press (2017). https://doi.org/10.1109/MOBILESoft.2017.19

  10. Cruz, L., Abreu, R.: Catalog of energy patterns for mobile applications. Empirical Softw. Engg. 24(4), 2209–2235 (2019). https://doi.org/10.1007/s10664-019-09682-0

    Article  Google Scholar 

  11. Li, D., Halfond, W.G.J.: An investigation into energy-saving programming practices for android smartphone app development. In: Proceedings of the 3rd International Workshop on Green and Sustainable Software, GREENS 2014, New York, NY, USA, pp. 46–53. ACM (2014). http://doi.acm.org/10.1145/2593743.2593750

  12. Morales, R., Saborido, R., Khomh, F., Chicano, F., Antoniol, G.: EARMO: an energy-aware refactoring approach for mobile apps. IEEE Trans. Software Eng. 44(12), 1176–1206 (2018). https://doi.org/10.1145/3180155.3182524

    Article  Google Scholar 

  13. Couto, M., Saraiva, J., Fernandes, J.P.: Energy refactorings for android in the large and in the wild. In: 2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 217–228. IEEE (2020). https://doi.org/10.1109/SANER48275.2020.9054858

  14. Rua, R., Couto, M., Saraiva, J.: GreenSource: a large-scale collection of android code, tests and energy metrics. In: 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR), pp. 176–180. IEEE Press (2019). https://doi.org/10.1109/MSR.2019.00035

  15. Manotas, I., et al.: An empirical study of practitioners’ perspectives on green software engineering. In: Proceedings of the 38th International Conference on Software Engineering, ICSE 2016, New York, NY, USA, pp. 237–248. Association for Computing Machinery (2016). https://doi.org/10.1145/2884781.2884810

  16. Pinto, G., Castor, F., Liu, Y.D.: Mining questions about software energy consumption. In: Proceedings of the 11th Working Conference on Mining Software Repositories, pp. 22–31. ACM (2014). https://doi.org/10.1145/2597073.2597110

  17. Pang, C., Hindle, A., Adams, B., Hassan, A.E.: What do programmers know about software energy consumption? IEEE Softw. 33(3), 83–89 (2016). https://doi.org/10.1109/MS.2015.83

    Article  Google Scholar 

  18. Cai, Y.: Integrating sustainability into undergraduate computing education. In: Proceedings of the 41st ACM Technical Symposium on Computer Science Education, SIGCSE 2010, New York, NY, USA, pp. 524–528. ACM (2010). https://doi.org/10.1145/1734263.1734439

  19. Brundtland, G.H.: Our common future, from one earth to one world - an overview by the world commission on environment and development (1987). https://sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf

  20. Harris, J.: Basic principles of sustainable development. In: Bawa, S.K., Seidler, R. (eds.) Dimensions of Sustainable Development, vol. 1, Encyclopedia of Life Support Systems - EOLSS, Oxford, United Kingdom, Ch. 2, pp. 21–40 (2009)

    Google Scholar 

  21. Appel, G., Dankelman, I., Kuipers, K.: Disciplinary explorations of sustainable development in higher education. In: Corcoran, P.B., Wals, A.E.J. (eds.) Higher Education and the Challenge of Sustainability, pp. 213–222. Springer, Dordrecht (2004). https://doi.org/10.1007/0-306-48515-X_16

    Chapter  Google Scholar 

  22. Sammalisto, K., Lindhqvist, T.: Integration of sustainability in higher education: a study with international perspectives. Innov. High. Educ. 32, 221–233 (2008). https://doi.org/10.1007/s10755-007-9052-x

    Article  Google Scholar 

  23. Turkin, I., Vykhodets, Y.: Software engineering master’s program and green IT: the design of the software engineering sustainability course. In: 2018 IEEE 9th International Conference on Dependable Systems, Services and Technologies, pp. 662–666 (2018)

    Google Scholar 

  24. Kaivola, T., Rohweder, L. (eds.): Towards sustainable development in higher education - reflections, no. 2007:6 in Opetusministeriön julkaisuja, Opetusministeriö, koulutus- ja tiedepolitiikan osasto, Finland (2007)

    Google Scholar 

  25. Xiong, W., Mok, K.H.: Sustainability practices of higher education institutions in Hong Kong: a case study of a sustainable campus consortium. Sustainability (2), 452 (2020). https://doi.org/10.3390/su12020452

  26. Watson, R.T., Corbett, J., Boudreau, M.C., Webster, J.: An information strategy for environmental sustainability. Commun. ACM 55(7), 28–30 (2012). https://doi.org/10.1145/2209249.2209261

    Article  Google Scholar 

  27. Mann, S., Smith, L., Muller, L.: Computing education for sustainability. SIGCSE Bull. 40(4), 183–193 (2008). https://doi.org/10.1145/1473195.1473241

    Article  Google Scholar 

  28. Becker, C., et al.: Venters, sustainability design and software: the Karlskrona manifesto. In: Proceedings of the 37th International Conference on Software Engineering - Volume 2, ICSE 2015, pp. 467–476. IEEE Press (2015)

    Google Scholar 

  29. Torre, D., Procaccianti, G., Fucci, D., Lutovac, S., Scanniello, G.: On the presence of green and sustainable software engineering in higher education curricula. In: Proceedings of the 1st International Workshop on Software Engineering Curricula for Millennials, SECM 2017, pp. 54–60. IEEE Press (2017). https://doi.org/10.1109/SECM.2017.4

  30. Penzenstadler, B., et al.: Everything is interrelated: teaching software engineering for sustainability. In: Proceedings of the 40th International Conference on Software Engineering: Software Engineering Education and Training, ICSE-SEET 2018, New York, NY, USA, pp. 153–162. Association for Computing Machinery (2018). https://doi.org/10.1145/3183377.3183382

  31. Hamilton, M.: Learning and teaching computing sustainability. In: Proceedings of the 2015 ACM Conference on Innovation and Technology in Computer Science Education, ITiCSE 2015, New York, NY, USA, pp. 338. ACM (2015). https://doi.org/10.1145/2729094.2754850

  32. Abernethy, K., Treu, K.: Integrating sustainability across the computer science curriculum. J. Comput. Sci. Coll. 30(2), 220–228 (2014). https://dl.acm.org/doi/10.1145/1734263.1734439

    Google Scholar 

  33. Saraiva, J., Zong, Z., Pereira, R.: Bringing green software to computer science curriculum: perspectives from researchers and educators. In: Proceedings of the 26th ACM Conference on Innovation and Technology in Computer Science Education V. 1, ITiCSE 2021, New York, NY, USA, pp. 498–504. ACM (2021). https://doi.org/10.1145/3430665.3456386

  34. Pattinson, C.: ICT and green sustainability research and teaching. IFAC-PapersOnLine 50 (1), 12938–12943 (2017). 20th IFAC World Congress. https://doi.org/10.1016/j.ifacol.2017.08.1794

  35. Berntsen, K.R., Olsen, M.R., Limbu, N., Tran, A.T., Colomo-Palacios, R.: Sustainability in software engineering - a systematic mapping. In: CIMPS 2016. AISC, vol. 537, pp. 23–32. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-48523-2_3

    Chapter  Google Scholar 

  36. Wolfram, N., Lago, P., Osborne, F.: Sustainability in software engineering. In: Sustainable Internet and ICT for Sustainability (SustainIT) 2017, pp. 1–7 (2017)

    Google Scholar 

  37. Calero, C., Piattini, M.: Green in Software Engineering. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-08581-4

    Book  Google Scholar 

  38. Luttik, S.P., Visser, E.: Specification of rewriting strategies. In: Proceedings of the 2nd International Conference on Theory and Practice of Algebraic Specifications, Algebraic 1997, Swindon, GBR, p. 9. BCS Learning & Development Ltd. (1997)

    Google Scholar 

  39. Lämmel, R., Visser, J.: Typed combinators for generic traversal. In: Krishnamurthi, S., Ramakrishnan, C.R. (eds.) PADL 2002. LNCS, pp. 137–154. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45587-6_10

    Chapter  Google Scholar 

  40. Kiczales, G., Hilsdale, E.: Aspect-oriented programming. SIGSOFT Softw. Eng. Notes 26(5), 313 (2001). https://doi.org/10.1145/503271.503260

    Article  Google Scholar 

  41. David, H., Gorbatov, E., Hanebutte, U.R., Khanna, R., Le, C.: RAPL: memory power estimation and capping. In: International Symposium on Low-Power Electronics and Design (ISLPED), 2010 ACM/IEEE, pp. 189–194. IEEE (2010). https://doi.org/10.1145/1840845.1840883

  42. Hähnel, M., Döbel, B., Völp, M., Härtig, H.: Measuring energy consumption for short code paths using RAPL. SIGMETRICS Perform. Eval. Rev. 40(3), 13–17 (2012). https://doi.org/10.1145/2425248.2425252

    Article  Google Scholar 

  43. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley Longman Publishing Co., Inc., USA (1999)

    MATH  Google Scholar 

  44. Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Trans. Softw. Eng. 30(2), 126–139 (2004). https://doi.org/10.1109/TSE.2004.1265817

    Article  Google Scholar 

  45. Allman, E.: Managing technical debt. Commun. ACM 55(5), 50–55 (2012). https://doi.org/10.1145/2160718.2160733

    Article  Google Scholar 

  46. Couto, M., Maia, D., Saraiva, J., Pereira, R.: On energy debt: managing consumption on evolving software. In: Proceedings of the 3rd International Conference on Technical Debt, TechDebt 2020, ACM, New York, NY, USA, pp. 62–66 (2020). https://doi.org/10.1145/3387906.3388628

  47. Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A survey on software fault localization. IEEE Trans. Software Eng. 42(8), 707–740 (2016). https://doi.org/10.1109/TSE.2016.2521368

    Article  Google Scholar 

  48. Abreu, R., Zoeteweij, P., van Gemund, A.J.: On the accuracy of spectrum-based fault localization, in: Testing: Academic and Industrial Conference Practice and Research Techniques - MUTATION, pp. 89–98 (2007)

    Google Scholar 

  49. Pereira, R., T. Carção, Couto, M., Cunha, J., Fernandes, J.P., Saraiva, J.: Helping programmers improve the energy efficiency of source code. In: Proceedings of the 39th International Conference on Software Engineering Companion, ICSE-C 2017, Piscataway, NJ, USA, pp. 238–240. IEEE Press (2017). https://doi.org/10.1109/ICSE-C.2017.80

  50. Pereira, R., Carção, T., Couto, M., Cunha, J., Fernandes, J.P., Saraiva, J.: Spelling out energy leaks: aiding developers locate energy inefficient code. J. Syst. Software 161 (2020). https://doi.org/10.1016/j.jss.2019.110463

  51. Goues, C.L., Pradel, M., Roychoudhury, A.: Automated program repair. Commun. ACM 62(12), 56–65 (2019). https://doi.org/10.1145/3318162

    Article  Google Scholar 

  52. Pereira, R., Couto, M., Ribeiro, F., Rua, R., Saraiva, J.: Energyware analysis. In: 7th Workshop on Software Quality Analysis, Monitoring, Improvement, and Applications (SQAMIA), vol. 2217, CEUR Workshop Proceedings (2018)

    Google Scholar 

  53. Pereira, R.: Energyware engineering: techniques and tools for green software development, Ph.D. thesis, Universidade do Minho (2018)

    Google Scholar 

  54. Saraiva, J., Abreu, R., Cunha, J., Fernandes, J.P.: GreenSoftwareLab: towards an engineering discipline for green software, Impact 2018 (1) (2018). https://doi.org/10.21820/23987073.2018.9

  55. Maia, D., Couto, M., Saraiva, J., Pereira, R.: E-Debitum: managing software energy debt. In: Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering Workshops, New York, NY, USA, pp. 170–177. ACM (2020). https://doi.org/10.1145/3417113.3422999

  56. Kiselyov, O., Biboudis, A., Palladinos, N., Smaragdakis, Y.: Stream fusion, to completeness. In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, New York, NY, USA, pp. 285–299. Association for Computing Machinery (2017). https://doi.org/10.1145/3009837.3009880

  57. Longo, M., Rodriguez, A., Mateos, C., Zunino, A.: Reducing energy usage in resource-intensive Java-based scientific applications via micro-benchmark based code refactorings. Comput. Sci. Inf. Syst. 16(2), 541–564 (2019). https://doi.org/10.2298/CSIS180608009L

    Article  Google Scholar 

  58. Melfe, G., Fonseca, A., Fernandes, J.P.: Helping developers write energy efficient haskell through a data-structure evaluation. In: 2018 IEEE/ACM 6th International Workshop on Green And Sustainable Software (GREENS), pp. 9–15. IEEE (2018). https://doi.org/10.1145/3194078.3194080

  59. Ribeiro, F., Saraiva, J., Pardo, A.: Java stream fusion: adapting FP mechanisms for an OO setting. In: Proceedings of the XXIII Brazilian Symposium on Programming Languages, SBLP 2019, New York, NY, USA, pp. 30–37. ACM (2019). https://doi.org/10.1145/3355378.3355386

  60. Mendonça, W.L., et al.: Understanding the impact of introducing lambda expressions in Java programs. J. Software Eng. Res. Dev. 8(1–8), 22 (2020). https://sol.sbc.org.br/journals/index.php/jserd/article/view/744

Download references

Aknowlegments

This work is financed by the ERDF European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme within project POCI-01-0145-FEDER-006961, by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia within project POCI-01-0145-FEDER-016718 and UID/EEA/50014/2013, and by the Erasmus+ Key Action 2 project “SusTrainable - Promoting Sustainability as a Fundamental Driver in Software Development Training and Education”, project No. 2020-1-PT01-KA203-078646.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Saraiva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saraiva, J., Pereira, R. (2023). Energy Efficient Software in an Engineering Course. In: Porkoláb, Z., Zsók, V. (eds) Composability, Comprehensibility and Correctness of Working Software. CEFP 2019. Lecture Notes in Computer Science, vol 11950. Springer, Cham. https://doi.org/10.1007/978-3-031-42833-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42833-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42832-6

  • Online ISBN: 978-3-031-42833-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics