Abstract
This work deals with the Mobile Mammography Unit Routing Problem in Brazil. The problem is a Multi-depot Open Vehicle Routing Problem variant. In this problem, there are a fixed number of depots, each with a limited number of Mobile Mammography Units (MMUs). Each MMU has a known screening capacity and a set of candidate cities it can serve with known demands for screening. The objective is to define the cities visiting order for each MMU, maximizing the served screening demand and minimizing the total travel distance. We introduce a mathematical programming formulation and two algorithms based on Non-dominated Sorting Genetic Algorithm II (NSGA-II). They differ from each other by the use of a local search. One version has a Local Search as a mutation operator, and the other does not. Both algorithms were tested on benchmark based on real data from Minas Gerais state, Brazil. We used the hypervolume metric to analyze the performance of the proposed algorithms considering different scenarios. The results indicate that using multiple crossover operators and adding a local search as a mutation operator to the algorithm brings better results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
All used instances are available at https://bit.ly/3mxnIbl.
References
Amaral, P., Luz, L., Cardoso, F., Freitas, R.: Spatial distribution of mammography equipment in brazil. Revista Brasileira de Estudos Urbanos e Regionais 19(2), 326 (2017). https://doi.org/10.22296/2317-1529.2017v19n2p326
Audet, C., Bigeon, J., Cartier, D., Le Digabel, S., Salomon, L.: Performance indicators in multiobjective optimization. Eur. J. Oper. Res. 292(2), 397–422 (2021). https://doi.org/10.1016/j.ejor.2020.11.016
Bellmore, M., Nemhauser, G.L.: The traveling salesman problem: a survey. Oper. Res. 16(3), 538–558 (1968). https://doi.org/10.1287/opre.16.3.538
de Campos, M.V.A., de Sá, M.V.S.M., Rosa, P.M., Penna, P.H.V., de Souza, S.R., Souza, M.J.F.: A mixed linear integer programming formulation and a simulated annealing algorithm for the mammography unit location problem. In: ICEIS, pp. 428–439 (2020). https://doi.org/10.5220/0009420704280439
de Carvalho, L.R., do Amaral, P.V.M., Mendes, P.S.: Matrizes de distâncias e tempo de deslocamento rodoviário entre os municípios brasileiros : uma atualização metodológica para 2020. Textos para Discussão Cedeplar-UFMG 630, Cedeplar, Universidade Federal de Minas Gerais (2021). https://ideas.repec.org/p/cdp/texdis/td630.html
Corrêa, V.H.V., Costa Lima, B.J., Silva-e-Souza, P.H., Penna, P.H.V., Souza, M.J.F.: Localização de mamógrafos: um estudo de caso na rede pública de saúde. In: Anais do Simpósio Brasileiro de Pesquisa Operacional, p. 84874. Rio de Janeiro, Brazil (2018). http://bit.ly/3ZDmusx
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). https://doi.org/10.1109/4235.996017
Ferlay, J., et al.: International agency for research on cancer (2020). https://gco.iarc.fr/today. Accessed 18 Mar 2023
Fonseca, C., Paquete, L., Lopez-Ibanez, M.: An improved dimension-sweep algorithm for the hypervolume indicator. In: 2006 IEEE International Conference on Evolutionary Computation, pp. 1157–1163 (2006). https://doi.org/10.1109/CEC.2006.1688440
Hansen, P., Mladenović, N., Todosijević, R., Hanafi, S.: Variable neighborhood search: basics and variants. EURO J. Comput. Opt. 5(3), 423–454 (2017). https://doi.org/10.1007/s13675-016-0075-x
Hussain, A., Muhammad, Y., Nauman Sajid, M., Hussain, I., Mohamd Shoukry, A., Gani, S.: Genetic algorithm for traveling salesman problem with modified cycle crossover operator. Computational Intelligence and Neuroscience 2017, pp. 1–7 (2017). https://doi.org/10.1155/2017/7430125
IBGE: Áreas territoriais (2021). https://bit.ly/3Mh1TqO. Accessed 23 Mar 2023
INCA: A situação do câncer de mama no brasil: síntese de dados dos sistemas de informação (2019). https://bit.ly/3ocLOZt
INCA: Estatísticas de câncer (2022). https://www.inca.gov.br/numeros-de-cancer. Accessed 3 Jul 2022
Lalla-Ruiz, E., Mes, M.: Mathematical formulations and improvements for the multi-depot open vehicle routing problem. Optim. Lett. 15(1), 271–286 (2020). https://doi.org/10.1007/s11590-020-01594-z
Lenstra, J.K., Kan, A.R.: Complexity of vehicle routing and scheduling problems. Networks 11(2), 221–227 (1981). https://doi.org/10.1002/net.3230110211
López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.: The Irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016). https://doi.org/10.1016/j.orp.2016.09.002
Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing problem. Comput. Oper. Res. 31(12), 1985–2002 (2004). https://doi.org/10.1016/S0305-0548(03)00158-8
Prins, C., Lacomme, P., Prodhon, C.: Order-first split-second methods for vehicle routing problems: a review. Transp. Res. Part C Emer. Technol. 40, 179–200 (2014). https://doi.org/10.1016/j.trc.2014.01.011
Rosa, O.A.S., Rosa, P.M., Penna, P.H.V., Souza, M.J.F.: Um algoritmo construtivo para o problema de roteamento de unidades móveis de mamografia. Simpósio Brasileiro de Pesquisa Operacional (2020). http://bit.ly/3lVa5Ck
Souza, M.J.F., Coelho, I.M., Ribas, S., Santos, H.G., Merschmann, L.H.C.: A hybrid heuristic algorithm for the open-pit-mining operational planning problem. Eur. J. Oper. Res. 207(2), 1041–1051 (2010). https://doi.org/10.1016/j.ejor.2010.05.031
Souza, M.J.F., Penna, P.H.V., Moreira de Sá, M.V.S., Rosa, P.M.: A vns-based algorithm for the mammography unit location problem. In: International Conference on Variable Neighborhood Search. pp. 37–52. Springer (2020). DOI: 10.1007/978-3-030-44932-2_3
Souza, M., Penna, P., Sá, M., Rosa, P., Monteiro, J., Lisboa, M.: Localização de mamógrafos: formulações e estudo preliminar de caso de Rondônia. In: Anais do LI Simpósio Brasileiro de Pesquisa Operacional, vol. 51, p. 107698. SOBRAPO, Galoá, Limeira (SP) (2019). https://bityli.com/HAEBCtEkv. Accessed 31 Aug 2022
Srinivas, N., Deb, K.: Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994). https://doi.org/10.1162/evco.1994.2.3.221
Subramanian, A., Drummond, L., Bentes, C., Ochi, L., Farias, R.: A parallel heuristic for the vehicle routing problem with simultaneous pickup and delivery. Comput. Oper. Res. 37(11), 1899–1911 (2010). https://doi.org/10.1016/j.cor.2009.10.011
SUS: Série parâmetros sus - volume 1 - caderno 1 - republicado 1 (2017). https://bit.ly/41tfmjD
SUS: Cnes - recursos físicos (2019). http://bit.ly/40BKfm9. Accessed 28 Mar 2023
WHO: Cancer, February 2022. https://www.who.int/news-room/fact-sheets/detail/cancer. Accessed 18 Mar 2023
Acknowledgments
The authors are grateful for the support provided by the Universidade Federal de Ouro Preto, and by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Finance Code 001), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grants 428817/2018-1 and 303266/2019-8), and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG, grant PPM CEX 676/17).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
de Araujo, T.G., Penna, P.H.V., Souza, M.J.F. (2023). An Hybrid NSGA-II Algorithm for the Bi-objective Mobile Mammography Unit Routing Problem. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2023. Lecture Notes in Computer Science(), vol 14125. Springer, Cham. https://doi.org/10.1007/978-3-031-42505-9_29
Download citation
DOI: https://doi.org/10.1007/978-3-031-42505-9_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-42504-2
Online ISBN: 978-3-031-42505-9
eBook Packages: Computer ScienceComputer Science (R0)