Abstract
In this paper, a novel approach to the GQR algorithm is presented. The idea revolves around batch training for the feedforward neural networks. The core of this paper contains a mathematical explanation for the batch approach, which can be utilized in the GQR algorithm. The final section of the article contains several simulations. They prove the novel approach to be superior to the original GQR algorithm.
This work has been supported by the Polish National Science Center under Grant 2017/27/B/ST6/02852.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Bilski, J., Kowalczyk, B., Marchlewska, A., Żurada, J.M.: Local Levenberg-Marquardt algorithm for learning feedforwad neural networks. J. Artif. Intell. Soft Comput. Res. 10(4), 299–316 (2020)
Bilski, J., Rutkowski, L.: A fast training algorithm for neural networks. IEEE Trans. Circ. Syst. Part II 45(6), 749–753 (1998)
Bilski, J., Smolag, J.: Parallel architectures for learning the RTRN and Elman dynamic neural network. IEEE Trans. Parallel Distrib. Syst. 26(9), 2561–2570 (2015)
Bilski, J., Wilamowski, B.M.: Parallel Levenberg-Marquardt algorithm without error backpropagation. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 25–39. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59063-9_3
Bilski, J., Kowalczyk, B., Kisiel-Dorohinicki, M., Siwocha, A., Żurada, J.: Towards a very fast feedforward multilayer neural networks training algorithm (2022)
Bilski, J., Kowalczyk, B., Marjanski, A., Gandor, M., Żurada, J.: A novel fast feedforward neural networks training algorithm. J. Artif. Intell. Soft Comput. Res. 11(4), 287–306 (2021)
Bilski, J., Rutkowski, L., Smoląg, J., Tao, D.: A novel method for speed training acceleration of recurrent neural networks. Inf. Sci. 553, 266–279 (2021)
Bilski, J., Smoląg, J., Kowalczyk, B., Grzanek, K., Izonin, I.: Fast computational approach to the Levenberg-Marquardt algorithm for training feedforward neural networks. J. Artif. Intell. Soft Comput. Res. 12(2), 45–61 (2023)
Bougueroua, N., Mazouzi, S., Belaoued, M., Seddari, N., Derhab, A., Bouras, A.: A survey on multi-agent based collaborative intrusion detection systems. J. Artif. Intell. Soft Comput. Res. 11(2), 111–142 (2021)
Cierniak, R., et al.: A new statistical reconstruction method for the computed tomography using an x-ray tube with flying focal spot. J. Artif. Intell. Soft Comput. Res. 11(4), 243–266 (2021)
Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)
Gabryel, M., Grzanek, K., Hayashi, Y.: Browser fingerprint coding methods increasing the effectiveness of user identification in the web traffic. J. Artif. Intell. Soft Comput. Res. 10(4), 243–253 (2020)
Gabryel, M., Lada, D., Filutowicz, Z., Patora-Wysocka, Z., Kisiel-Dorohinicki, M., Chen, G.Y.: Detecting anomalies in advertising web traffic with the use of the variational autoencoder. J. Artif. Intell. Soft Comput. Res. 12(4), 255–256 (2022)
Hagan, M.T., Menhaj, M.B.: Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Networks 5, 989–993 (1994)
Hinton, G., Sejnowski, T.J.: Unsupervised Learning: Foundations of Neural Computation. The MIT Press, Cambridge (1999)
Kiełbasiński, A., Schwetlick, H.: Numeryczna Algebra Liniowa: Wprowadzenie do Obliczeń Zautomatyzowanych. Wydawnictwa Naukowo-Techniczne, Warszawa (1992)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014)
Niksa-Rynkiewicz, T., Szewczuk-Krypa, N., Witkowska, A., Cpalka, K., Zalasinski, M., Cader, A.: Monitoring regenerative heat exchanger in steam power plant by making use of the recurrent neural network. J. Artif. Intell. Soft Comput. Res. 11(2), 143–155 (2021)
Pérez-Pons, M.E., Parra-Dominguez, J., Omatu, S., Herrera-Viedma, E., Corchado, J.M.: Machine learning and traditional econometric models: a systematic mapping study. J. Artif. Intell. Soft Comput. Res. 12(2), 79–100 (2022)
Werbos, J.: Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Harvard University (1974)
Woldan, P., Duda, P., Cader, A., Laktionov, I.: A new approach to image-based recommender systems with the application of heatmaps maps. J. Artif. Intell. Soft Comput. Res. 12(2), 63–72 (2023)
Zalasinski, M., et al.: Evolutionary algorithm for selecting dynamic signatures partitioning approach (2022)
Zeiler, M.: ADADELTA: an adaptive learning rate method (2012)
Zhao, X., Song, M., Liu, A., Wang, Y., Wang, T., Cao, J.: Data-driven temporal-spatial model for the prediction of AQI in Nanjing. J. Artif. Intell. Soft Comput. Res. 10(4), 255–270 (2020)
El Zini, J., Rizk, Y., Awad, M.: An optimized parallel implementation of non-iteratively trained recurrent neural networks. J. Artif. Intell. Soft Comput. Res. 11(1), 33–50 (2021)
Żurada, J.M.: Introduction to Artificial Neural Systems. West (1992)
Łapa, K., Cpałka, K., Kisiel-Dorohinicki, M., Paszkowski, J., Dębski, M., Le, V.-H.: Multi-population-based algorithm with an exchange of training plans based on population evaluation (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bilski, J., Kowalczyk, B. (2023). A Novel Approach to the GQR Algorithm for Neural Networks Training. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2023. Lecture Notes in Computer Science(), vol 14125. Springer, Cham. https://doi.org/10.1007/978-3-031-42505-9_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-42505-9_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-42504-2
Online ISBN: 978-3-031-42505-9
eBook Packages: Computer ScienceComputer Science (R0)