Overview of the ImageCLEF 2023: Multimedia Retrieval in Medical, Social Media and Internet Applications | SpringerLink
Skip to main content

Overview of the ImageCLEF 2023: Multimedia Retrieval in Medical, Social Media and Internet Applications

  • Conference paper
  • First Online:
Experimental IR Meets Multilinguality, Multimodality, and Interaction (CLEF 2023)

Abstract

This paper presents an overview of the ImageCLEF 2023 lab, which was organized in the frame of the Conference and Labs of the Evaluation Forum – CLEF Labs 2023. ImageCLEF is an ongoing evaluation event that started in 2003 and that encourage the evaluation of the technologies for annotation, indexing and retrieval of multimodal data with the goal of providing information access to large collections of data in various usage scenarios and domains. In 2023, the 21st edition of ImageCLEF runs three main tasks: (i) a medical task which included the sequel of the caption analysis task and three new tasks, namely, GANs for medical images, Visual Question Answering for colonoscopy images, and medical dialogue summarization; (ii) a sequel of the fusion task addressing the design of late fusion schemes for boosting the performance, with two real-world applications: image search diversification (retrieval) and prediction of visual interestingness (regression); and (iii) a sequel of the social media aware task on potential real-life effects awareness of online image sharing. The benchmark campaign was a real success and received the participation of over 45 groups submitting more than 240 runs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.imageclef.org/.

  2. 2.

    https://www.aicrowd.com/.

  3. 3.

    https://www.ai4media.eu/.

  4. 4.

    https://codalab.org/.

  5. 5.

    https://scholar.google.com/.

  6. 6.

    https://www.imageclef.org/2023/.

  7. 7.

    https://www.imageclef.org/2023/.

  8. 8.

    https://www.aicrowd.com/.

  9. 9.

    https://github.com/AIMultimediaLab/AI4Media-EaaS-prototype-Py2-public.

  10. 10.

    https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/.

References

  1. Andrei, A., Radzhabov, A., Coman, I., Kovalev, V., Ionescu, B., Müller, H.: Overview of ImageCLEFmedical GANs 2023 task - identifying training data “Fingerprints” in synthetic biomedical images generated by GANs for medical image security. In: CLEF2023 Working Notes. CEUR Workshop Proceedings, CEUR-WS.org, Thessaloniki, Greece, 18–21 September 2023

    Google Scholar 

  2. Banerjee, S., Lavie, A.: Meteor: an automatic metric for MT evaluation with improved correlation with human judgments. In: Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, pp. 65–72. Association for Computational Linguistics, Ann Arbor, Michigan, June 2005. http://aclanthology.org/W05-0909

  3. Ben Abacha, A., Datla, V.V., Hasan, S.A., Demner-Fushman, D., Müller, H.: Overview of the VQA-med task at ImageCLEF 2020: visual question answering and generation in the medical domain. In: CLEF 2020 Working Notes. CEUR Workshop Proceedings, CEUR-WS.org, Thessaloniki, Greece, 22–25 September 2020

    Google Scholar 

  4. Ben Abacha, A., Hasan, S.A., Datla, V.V., Liu, J., Demner-Fushman, D., Müller, H.: VQA-Med: overview of the medical visual question answering task at ImageCLEF 2019. In: CLEF2019 Working Notes. CEUR Workshop Proceedings, CEUR-WS.org, Lugano, Switzerland, 09–12 September 2019. http://ceur-ws.org

  5. Ben Abacha, A., Mrabet, Y., Zhang, Y., Shivade, C., Langlotz, C.P., Demner-Fushman, D.: Overview of the MEDIQA 2021 shared task on summarization in the medical domain. In: Proceedings of the 20th Workshop on Biomedical Language Processing, BioNLP@NAACL-HLT 2021, Online, 11 June 2021, pp. 74–85. Association for Computational Linguistics (2021). http://doi.org/10.18653/v1/2021.bionlp-1.8

  6. Ben Abacha, A., Sarrouti, M., Demner-Fushman, D., Hasan, S.A., Müller, H.: Overview of the VQA-med task at ImageCLEF 2021: visual question answering and generation in the medical domain. In: CLEF 2021 Working Notes. CEUR Workshop Proceedings, CEUR-WS.org, Bucharest, Romania, 21–24 September 2021

    Google Scholar 

  7. Ben Abacha, A., Shivade, C., Demner-Fushman, D.: Overview of the MEDIQA 2019 shared task on textual inference, question entailment and question answering. In: Proceedings of the 18th BioNLP Workshop and Shared Task, BioNLP@ACL 2019, Florence, Italy, 1 August 2019, pp. 370–379. Association for Computational Linguistics (2019). http://doi.org/10.18653/v1/w19-5039

  8. Ben Abacha, A., Yim, W.W., Adams, G., Snider, N., Yetisgen, M.: Overview of the MEDIQA-Chat 2023 shared tasks on the summarization and generation of doctor-patient conversations. In: ACL-ClinicalNLP 2023 (2023)

    Google Scholar 

  9. Ben Abacha, A., Yim, W.W., Michalopoulos, G., Lin, T.: An investigation of evaluation metrics for automated medical note generation (2023)

    Google Scholar 

  10. Ben Abacha, A., Yim, W.W., Fan, Y., Lin, T.: An empirical study of clinical note generation from doctor-patient encounters. In: Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pp. 2291–2302. Association for Computational Linguistics, Dubrovnik, Croatia, May 2023. http://aclanthology.org/2023.eacl-main.168

  11. Bodenreider, O.: The unified medical language system (UMLS): integrating biomedical terminology. Nucleic Acids Res. 32(Database-Issue), 267–270 (2004). https://doi.org/10.1093/nar/gkh061

  12. Borgli, H., et al.: Hyperkvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy. Sci. Data 7(1) (2020). https://doi.org/10.1038/s41597-020-00622-y

  13. Clough, P., Müller, H., Sanderson, M.: The CLEF 2004 cross-language image retrieval track. In: Peters, C., Clough, P., Gonzalo, J., Jones, G.J.F., Kluck, M., Magnini, B. (eds.) CLEF 2004. LNCS, vol. 3491, pp. 597–613. Springer, Heidelberg (2005). https://doi.org/10.1007/11519645_59

    Chapter  Google Scholar 

  14. Clough, P., Sanderson, M.: The CLEF 2003 cross language image retrieval task. In: Proceedings of the Cross Language Evaluation Forum (CLEF 2003) (2004)

    Google Scholar 

  15. Constantin, M.G., Ştefan, L.D., Dogariu, M., Ionescu, B.: AI multimedia lab at imagecleffusion 2022: deepfusion methods for ensembling in diverse scenarios. In: CLEF2022 Working Notes, CEUR Workshop Proceedings, CEUR-WS. org, Bologna, Italy (2022)

    Google Scholar 

  16. Constantin, M.G., Ştefan, L.D., Ionescu, B., Duong, N.Q., Demarty, C.H., Sjöberg, M.: Visual interestingness prediction: a benchmark framework and literature review. Int. J. Comput. Vis. 129(5), 1526–1550 (2021)

    Article  Google Scholar 

  17. Demarty, C.H., Sjöberg, M., Ionescu, B., Do, T.T., Gygli, M., Duong, N.: Mediaeval 2017 predicting media interestingness task. In: MediaEval workshop (2017)

    Google Scholar 

  18. Dicente Cid, Y., Kalinovsky, A., Liauchuk, V., Kovalev, V., Müller, H.: Overview of ImageCLEFtuberculosis 2017 - predicting tuberculosis type and drug resistances. In: CLEF2017 Working Notes. CEUR Workshop Proceedings, CEUR-WS.org, Dublin, Ireland, 11–14 September 2017. http://ceur-ws.org

  19. Hasan, S.A., Ling, Y., Farri, O., Liu, J., Lungren, M., Müller, H.: Overview of the ImageCLEF 2018 medical domain visual question answering task. In: CLEF2018 Working Notes. CEUR Workshop Proceedings, CEUR-WS.org, Avignon, France, 10–14 September 2018. http://ceur-ws.org

  20. García Seco de Herrera, A., Eickhoff, C., Andrearczyk, V., Müller, H.: Overview of the ImageCLEF 2018 caption prediction tasks. In: CLEF2018 Working Notes. CEUR Workshop Proceedings, CEUR-WS.org, Avignon, France, 10–14 September 2018. http://ceur-ws.org

  21. García Seco de Herrera, A., Schaer, R., Bromuri, S., Müller, H.: Overview of the ImageCLEF 2016 medical task. In: Working Notes of CLEF 2016 (Cross Language Evaluation Forum), September 2016

    Google Scholar 

  22. Hessel, J., Holtzman, A., Forbes, M., Bras, R.L., Choi, Y.: Clipscore: a reference-free evaluation metric for image captioning. In: Moens, M., Huang, X., Specia, L., Yih, S.W. (eds.) Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event/Punta Cana, Dominican Republic, 7–11 November 2021, pp. 7514–7528. Association for Computational Linguistics (2021). https://doi.org/10.18653/v1/2021.emnlp-main.595

  23. Hicks, S.A., Storås, A., Halvorsen, P., de Lange, T., Riegler, M.A., Thambawita, V.: Overview of imageclefmedical 2023 - medical visual question answering for gastrointestinal tract. In: CLEF2023 Working Notes. CEUR Workshop Proceedings, CEUR-WS.org, Thessaloniki, Greece, September 2023

    Google Scholar 

  24. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

  25. Ionescu, B., Gînscă, A.L., Boteanu, B., Lupu, M., Popescu, A., Müller, H.: Div150multi: a social image retrieval result diversification dataset with multi-topic queries. In: Proceedings of the 7th International Conference on Multimedia Systems, pp. 1–6 (2016)

    Google Scholar 

  26. Ionescu, B., et al.: ImageCLEF 2019: multimedia retrieval in medicine, lifelogging, security and nature. In: Crestani, F., et al. (eds.) CLEF 2019. LNCS, vol. 11696, pp. 358–386. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28577-7_28

    Chapter  Google Scholar 

  27. Ionescu, B., Rohm, M., Boteanu, B., Gînscă, A.L., Lupu, M., Müller, H.: Benchmarking image retrieval diversification techniques for social media. IEEE Trans. Multimed. 23, 677–691 (2020)

    Article  Google Scholar 

  28. Jha, D., et al.: Kvasir-Instrument: diagnostic and therapeutic tool segmentation dataset in gastrointestinal endoscopy. In: Proceedings of the International Conference on MultiMedia Modeling (MMM). pp. 218–229 (2021). http://doi.org/10.1007/978-3-030-67835-7_19

  29. Jha, D., et al.: Kvasir-SEG: a segmented polyp dataset. In: Proceeding of the International Conference on Multimedia Modeling (MMM), vol. 11962, pp. 451–462 (2020). http://doi.org/10.1007/978-3-030-37734-2_37

  30. Li, J., Li, D., Savarese, S., Hoi, S.C.H.: BLIP-2: bootstrapping language-image pre-training with frozen image encoders and large language models. CoRR abs/2301.12597 (2023). 10.48550/arXiv. 2301.12597, http://doi.org/10.48550/arXiv.2301.12597

  31. Müller, H., Kalpathy-Cramer, J.: The ImageCLEF medical retrieval task at ICPR 2010 — information fusion to combine visual and textual information. In: Ünay, D., Çataltepe, Z., Aksoy, S. (eds.) ICPR 2010. LNCS, vol. 6388, pp. 99–108. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17711-8_11

    Chapter  Google Scholar 

  32. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp. 311–318. Association for Computational Linguistics, Philadelphia, Pennsylvania, USA, July 2002. https://doi.org/10.3115/1073083.1073135, http://aclanthology.org/P02-1040

  33. Pelka, O., Ben Abacha, A., García Seco de Herrera, A., Jacutprakart, J., Friedrich, C.M., Müller, H.: Overview of the ImageCLEFmed 2021 concept & caption prediction task. In: CLEF2021 Working Notes, pp. 1101–1112. CEUR Workshop Proceedings, CEUR-WS.org, Bucharest, Romania, 21–24 September 2021

    Google Scholar 

  34. Pelka, O., Friedrich, C.M., García Seco de Herrera, A., Müller, H.: Overview of the ImageCLEFmed 2019 concept prediction task. In: CLEF2019 Working Notes. CEUR Workshop Proceedings, CEUR-WS.org, Lugano, Switzerland, 09–12 September 2019. http://ceur-ws.org

  35. Pelka, O., Friedrich, C.M., García Seco de Herrera, A., Müller, H.: Overview of the ImageCLEFmed 2020 concept prediction task: medical image understanding. In: CLEF2020 Working Notes. CEUR Workshop Proceedings, CEUR-WS.org, Thessaloniki, Greece, 22–25 September 2020

    Google Scholar 

  36. Pelka, O., Koitka, S., Rückert, J., Nensa, F., Friedrich, C.M.: Radiology objects in context (ROCO): a multimodal image dataset. In: Stoyanov, D., et al. (eds.) LABELS/CVII/STENT -2018. LNCS, vol. 11043, pp. 180–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01364-6_20

    Chapter  Google Scholar 

  37. Popescu, A., Deshayes-Chossart, J., Schindler, H., Ionescu, B.: Overview of the ImageCLEF 2022 aware task. In: Proceedings of the Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, CEUR Workshop Proceedings, Bologna, Italy, 5–8 September 2022, vol. 3180, pp. 1329–1338 (2022)

    Google Scholar 

  38. Roberts, R.J.: PubMed central: the GenBank of the published literature. Proc. Natl. Acad. Sci. U.S.A. 98(2), 381–382 (2001). https://doi.org/10.1073/pnas.98.2.381

    Article  Google Scholar 

  39. Rückert, J., et al.: Overview of ImageCLEFmedical 2022 - caption prediction and concept detection. In: CLEF2022 Working Notes. CEUR Workshop Proceedings, CEUR-WS.org, Bologna, Italy, 5–8 September 2022

    Google Scholar 

  40. Rückert, J., et al.: Overview of ImageCLEFmedical 2023 - caption prediction and concept detection. In: CLEF2023 Working Notes. CEUR Workshop Proceedings, CEUR-WS.org, Thessaloniki, Greece, 18–21 September 2023

    Google Scholar 

  41. Sellam, T., Das, D., Parikh, A.P.: BLEURT: learning robust metrics for text generation. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J.R. (eds.) Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, 5–10 July 2020, pp. 7881–7892. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.acl-main.704

  42. Ştefan, L.D., Constantin, M.G., Dogariu, M., Ionescu, B.: Overview of imagecleffusion 2022 task-ensembling methods for media interestingness prediction and result diversification. In: CLEF2022 Working Notes, CEUR Workshop Proceedings, CEUR-WS. org, Bologna, Italy (2022)

    Google Scholar 

  43. Ştefan, L.D., Constantin, M.G., Dogariu, M., Ionescu, B.: Overview of imagecleffusion 2023 task - testing ensembling methods in diverse scenarios. In: Experimental IR Meets Multilinguality, Multimodality, and Interaction. CEUR Workshop Proceedings, CEUR-WS.org, Thessaloniki, Greece, 18–21 September 2023

    Google Scholar 

  44. Tsikrika, T., de Herrera, A.G.S., Müller, H.: Assessing the scholarly impact of ImageCLEF. In: Forner, P., Gonzalo, J., Kekäläinen, J., Lalmas, M., de Rijke, M. (eds.) CLEF 2011. LNCS, vol. 6941, pp. 95–106. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23708-9_12

    Chapter  Google Scholar 

  45. Tsikrika, T., Larsen, B., Müller, H., Endrullis, S., Rahm, E.: The scholarly impact of CLEF (2000–2009). In: Forner, P., Müller, H., Paredes, R., Rosso, P., Stein, B. (eds.) CLEF 2013. LNCS, vol. 8138, pp. 1–12. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40802-1_1

    Chapter  Google Scholar 

  46. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al., Garnett, R. (eds.) Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4–9 December 2017, Long Beach, CA, USA, pp. 5998–6008 (2017). http://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

  47. Vedantam, R., Zitnick, C.L., Parikh, D.: Cider: consensus-based image description evaluation. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, 7–12 June 2015, pp. 4566–4575. IEEE Computer Society (2015). https://doi.org/10.1109/CVPR.2015.7299087

  48. Yim, W.W., Fu, Y., Abacha, A.B., Snider, N., Lin, T., Yetisgen, M.: ACI-BENCH: a novel ambient clinical intelligence dataset for benchmarking automatic visit note generation (2023)

    Google Scholar 

  49. Yim, W., Ben Abacha, A., Snider, N., Adams, G., Yetisgen, M.: Overview of the MEDIQA-Sum task at ImageCLEF 2023: summarization and classification of doctor-patient conversations. In: CLEF 2023 Working Notes. CEUR Workshop Proceedings, CEUR-WS.org, Thessaloniki, Greece, 18–21 September 2023

    Google Scholar 

  50. Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: evaluating text generation with BERT. In: 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, 26–30 April 2020. OpenReview.net (2020). http://openreview.net/forum?id=SkeHuCVFDr

Download references

Acknowledgements

The lab is supported under the H2020 AI4Media “A European Excellence Centre for Media, Society and Democracy” project, contract \(\#951911\), as well as the ImageCLEFaware, ImageCLEFfusion tasks. The work of Louise Bloch and Raphael Brüngel was partially funded by a PhD grant from the University of Applied Sciences and Arts Dortmund (FH Dortmund), Germany. The work of Ahmad Idrissi-Yaghir and Henning Schäfer was funded by a PhD grant from the DFG Research Training Group 2535 Knowledge- and data-based personalisation of medicine at the point of care (WisPerMed).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana-Maria Drăgulinescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ionescu, B. et al. (2023). Overview of the ImageCLEF 2023: Multimedia Retrieval in Medical, Social Media and Internet Applications. In: Arampatzis, A., et al. Experimental IR Meets Multilinguality, Multimodality, and Interaction. CLEF 2023. Lecture Notes in Computer Science, vol 14163. Springer, Cham. https://doi.org/10.1007/978-3-031-42448-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42448-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42447-2

  • Online ISBN: 978-3-031-42448-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics