Eliciting Meaningful Collaboration Metrics: Design Implications for Self-Tracking Technologies at Work | SpringerLink
Skip to main content

Eliciting Meaningful Collaboration Metrics: Design Implications for Self-Tracking Technologies at Work

  • Conference paper
  • First Online:
Human-Computer Interaction – INTERACT 2023 (INTERACT 2023)

Abstract

As the workplace collaboration software market is booming, there is an opportunity to design tools to support reflection and self-regulation of collaboration practices. Building on approaches from personal informatics (PI), we aim to understand and promote the use of data to enable employees to explore their work practices, specifically collaboration. Focused on the preparation stage of PI (deciding to track and tools selection), we invited office workers (N=15, knowledge workers in academia) to identify meaningful aspects of their collaboration experience and report them in a logbook for two weeks. We then conducted semi-structured interviews with participants to identify and reflect on metrics related to collaboration experience. We contribute new insights into employees’ motivations and envisioned metrics reflecting their collaboration, including the personal, social, and organizational considerations for collecting and sharing this data. We derive design implications for self-tracking technologies for collaboration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abtahi, P., Ding, V., Yang, A.C., Bruzzese, T., Romanos, A.B., et al.: Understanding physical practices and the role of technology in manual self-tracking. Proc. ACM on Inter. Mob. Wear. Ubiq. Technol. 4, 1–24 (12 2020). https://doi.org/10.1145/3432236

  2. Anderson, N.R., West, M.A.: Measuring climate for work group innovation: development and validation of the team climate inventory. Journ. of Org. Behav. 19, 235–258 (5 1998). https://doi.org/10.1002/(SICI)1099-1379(199805)19:3<235::AID-JOB837>3.0.CO;2-C

  3. Bedwell, W.L., Wildman, J.L., DiazGranados, D., Salazar, M., Kramer, W.S., Salas, E.: Collaboration at work: An integrative multilevel conceptualization. Hum. Res. Manag. Review 22, 128–145 (6 2012). https://doi.org/10.1016/j.hrmr.2011.11.007

  4. Bowler, R.D., Bach, B., Pschetz, L.: Exploring uncertainty in digital scheduling, and the wider implications of unrepresented temporalities in hci. In: Proc. 2022 CHI Conf. on Hum. Fact. in Comp. Sys. CHI ’22, ACM, New York, NY, USA (2022). https://doi.org/10.1145/3491102.3502107

  5. Briggs, R.O., Reinig, B.A., Vreede, G.J.D.: Meeting satisfaction for technology-supported groups: An empirical validation of a goal-attainment model. Small Group Research 37, 585–611 (12 2006). https://doi.org/10.1177/1046496406294320

  6. van Bussel, T., van den Heuvel, R., Lallemand, C.: Habilyzer: Empowering office workers to investigate their working habits using an open-ended sensor kit. In: 2022 CHI Conf. on Hum. Fact. in Comp. Sys. pp. 1–8. ACM, New York, NY, USA (2022). https://doi.org/10.1145/3491101.3519849

  7. Caglar, P.S., Roto, V., Vainio, T.: User experience research in the work context: Maps, gaps and agenda. Proc. ACM Hum.-Comput. Interact. 6, 1–28 (3 2022). https://doi.org/10.1145/3512979

  8. Chen, D., Zhang, Y., Lin, Y.: Group awareness and group awareness tools in computer-supported collaborative learning: A literature review. pp. 18–22 (07 2022). https://doi.org/10.1109/ISET55194.2022.00013

  9. Cho, J., Xu, T., Zimmermann-Niefield, A., Voida, S.: Reflection in theory and reflection in practice: An exploration of the gaps in reflection support among personal informatics apps. In: 2022 CHI Conf. on Hum. Fact. in Comp. Sys. CHI ’22, ACM, New York, NY, USA (2022). https://doi.org/10.1145/3491102.3501991

  10. Choe, E.K., Lee, N.B., Lee, B., Pratt, W., Kientz, J.A.: Understanding quantified-selfers’ practices in collecting and exploring personal data. In: Proc. 2014 Conf. on Hum. Fact. in Comp. Sys. pp. 1143–1152. ACM, New York, NY, USA (2014). https://doi.org/10.1145/2556288.2557372

  11. Chung, C.F., Dew, K., Cole, A., Zia, J., Fogarty, J., et al.: Boundary negotiating artifacts in personal informatics: Patient-provider collaboration with patient-generated data. In: Proc. 19th ACM Conf. on Comp.-Supp. Coop. Work and Soc. Comp. p. 770–786. CSCW ’16, ACM, New York, NY, USA (2016). https://doi.org/10.1145/2818048.2819926

  12. Coşkun, A., Karahanoǧlu, A.: Data sensemaking in self-tracking: Towards a new generation of self-tracking tools. Int. Journ. of Hum.-Comp. Inter. 0(0), 1–22 (2022). https://doi.org/10.1080/10447318.2022.2075637

  13. Daskalova, N., Desingh, K., Papoutsaki, A., Schulze, D., Sha, H., Huang, J.: Lessons learned from two cohorts of personal informatics self-experiments 1(3) (2017)

    Google Scholar 

  14. Denefleh, T., Berger, A., Kurze, A., Bischof, A., Frauenberger, C.: Sensorstation: Exploring simple sensor data in the context of a shared apartment. In: Proc. 2019 on Design. Inter. Sys. Conf. pp. 683–695. ACM, New York, NY, USA (2019). https://doi.org/10.1145/3322276.3322309

  15. van Dijk, E.T.K., Westerink, J.H., Beute, F., IJsselsteijn, W.A.: Personal informatics, self-insight, and behavior change: A critical review of current literature. Hum.-Comp. Inter. 32, 268–296 (2017). https://doi.org/10.1080/07370024.2016.1276456, https://doi.org/10.1080/07370024.2016.1276456

  16. Epstein, D.A., Caldeira, C., Figueiredo, M.C., Lu, X., Silva, L.M., et al.: Mapping and taking stock of the personal informatics literature. Proc. ACM on Interact. Mob. Wearable Ubiq. Technol. 4(4), 1–38 (2020)

    Google Scholar 

  17. Epstein, D.A., Ping, A., Fogarty, J., Munson, S.A.: A lived informatics model of personal informatics. In: Proc. 2015 ACM Intern. Joint Conf. on Pervas. and Ubiq. Comp. pp. 731–742. ACM, New York, NY, USA (2015). https://doi.org/10.1145/2750858.2804250

  18. Feustel, C., Aggarwal, S., Lee, B., Wilcox, L.: People like me: Designing for reflection on aggregate cohort data in personal informatics systems 2(3) (2018)

    Google Scholar 

  19. Gutwin, C., Greenberg, S.: A descriptive framework of workspace awareness for real-time groupware 11(3) (2002)

    Google Scholar 

  20. Häkkilä, J., Poguntke, R., Harjuniemi, E., Hakala, L., Colley, A., Schmidt, A.: Businec - studying the effects of a busyness signifying necklace in the wild. In: Proc. 2020 ACM Design. Inter. Sys. Conf. p. 2177–2188. DIS ’20, ACM, New York, NY, USA (2020). https://doi.org/10.1145/3357236.3395455

  21. Hassenzahl, M.: The thing and i: Understanding the relationship between user and product. In: Blythe, M.A., Monk, A.F., Overbeeke, K., Wright, P.C. (eds.) Funology: From Usability to Enjoyment. Kluwer Academic Publishers, Dordrecht, Netherlands (2003)

    Google Scholar 

  22. Inc., G.: Gartner forecasts worldwide social software and collaboration market to grow 17% in 2021 (3 2020), www.tinyurl.com/fj92t8na

  23. Karkar, R., Fogarty, J., Kientz, J.A., Munson, S.A., Vilardaga, R., Zia, J.: Opportunities and challenges for self-experimentation in self-tracking. pp. 991–996. ACM, New York, NY, USA (2015). https://doi.org/10.1145/2800835.2800949

  24. Khakurel, J., Immonen, M., Porras, J., Knutas, A.: Understanding the adoption of quantified self-tracking wearable devices in the organization environment: An empirical case study. In: Proc. 12th ACM Intern. Conf. on Pervasive Techn. Related to Assist. Env. p. 119–128. PETRA ’19, ACM, New York, NY, USA (2019). https://doi.org/10.1145/3316782.3321527

  25. Kim, Y.H., Choe, E.K., Lee, B., Seo, J.: Understanding personal productivity: How knowledge workers define, evaluate, and reflect on their productivity. In: 2019 CHI Conf. on Hum. Fact. in Comp. Sys. p. 1–12. ACM, New York, NY, USA (2019). https://doi.org/10.1145/3290605.3300845

  26. Lallemand, C., Gronier, G., Koenig, V.: User experience: A concept without consensus? exploring practitioners’ perspectives through an international survey. Comp. Hum. Behav. 43, 35–48. https://doi.org/10.1016/j.chb.2014.10.048

  27. Lanzing, M.: The transparent self 18(1) (2016)

    Google Scholar 

  28. Lee, K., Hong, H.: Designing for self-tracking of emotion and experience with tangible modality. In: 2017 Conf. on Design. Inter. Sys. p. 465–475. DIS ’17, ACM, New York, NY, USA (2017). https://doi.org/10.1145/3064663.3064697

  29. Li, I., Dey, A., Forlizzi, J.: A stage-based model of personal informatics systems. In: 2010 CHI Conf. on Hum. Fact. in Comp. Sys. vol. 1, pp. 557–566. ACM, New York, NY, USA (2010). https://doi.org/10.1145/1753326.1753409

  30. Lu, Y., Roto, V.: Evoking meaningful experiences at work - a positive design framework for work tools. Journ. of Engin. Design 26(4–6), 99–120 (2015). https://doi.org/10.1080/09544828.2015.1041461

    Article  Google Scholar 

  31. Lushnikova, A.: Eliciting meaningful collaboration metrics, www.osf.io/z2qfg

  32. Lutchyn, Y., Johns, P., Roseway, A., Czerwinski, M.: Moodtracker: Monitoring collective emotions in the workplace. In: 2015 Int. Conf. on Aff. Comp. and Int. Inter. (2015). https://doi.org/10.1109/ACII.2015.7344586

  33. Mantau, M.J., Barreto Vavassori Benitti, F.: Awareness support in collaborative system: Reviewing last 10 years of cscw research. In: 2022 IEEE 25th Int. Conf. on Comp. Supp. Coop. Work in Design. pp. 564–569 (2022). https://doi.org/10.1109/CSCWD54268.2022.9776091

  34. Marek, L., Brock, D., Savla, J.: Evaluating collaboration for effectiveness. Amer. Journ. of Eval. 36 (04 2014). https://doi.org/10.1177/1098214014531068

  35. Markopoulos, P.: A Design Framework for Awareness Systems. In: Markopoulos, P., De Ruyter, B., Mackay, W. (eds.) Awareness Systems. Hum.-Comp. Inter. Ser, Springer, London (2009)

    Chapter  Google Scholar 

  36. McKillop, M., Mamykina, L., Elhadad, N.: Designing in the dark: Eliciting self-tracking dimensions for understanding enigmatic disease. In: Proc. 2018 CHI Conf. on Hum. Fact. in Comp. Sys. p. 1–15. CHI ’18, ACM, New York, NY, USA (2018). https://doi.org/10.1145/3173574.3174139

  37. Murnane, E.L., Walker, T.G., Tench, B., Voida, S., Snyder, J.: Personal informatics in interpersonal contexts: Towards the design of technology that supports the social ecologies of long-term mental health management 2(CSCW) (2018)

    Google Scholar 

  38. Møller, N.H., Neff, G., Simonsen, J.G., Villumsen, J.C., Bjørn, P.: Can workplace tracking ever empower? collective sensemaking for the responsible use of sensor data at work. Proc. ACM Hum.-Comp. Inter. 5, 1–21 (7 2021). https://doi.org/10.1145/3463931

  39. Ngoon, T.J., Patidar, P., Ogan, A., Harrison, C., Agarwal, Y.: Professional informatics: Personalized, data-driven professional development (2022)

    Google Scholar 

  40. Patel, H., Pettitt, M., Wilson, J.R.: Factors of collaborative working: A framework for a collaboration model. Appl. Ergon. 43(1), 1–26 (2012). https://doi.org/10.1016/j.apergo.2011.04.009

    Article  Google Scholar 

  41. Pina, L., Sien, S.W., Song, C., Ward, T.M., Fogarty, J., et al.: Dreamcatcher: Exploring how parents and school-age children can track and review sleep information together. Proc. ACM Hum.-Comp. Inter. 4, 1–25 (5 2020). https://doi.org/10.1145/3392882

  42. Pina, L.R., Sien, S.W., Ward, T., Yip, J.C., Munson, S.A., et al.: From personal informatics to family informatics: Understanding family practices around health monitoring. In: Proc. ACM Conf. on Comp.-Supp. Coop. Work. pp. 2300–2315. ACM, Portland, OR, USA (2 2017). https://doi.org/10.1145/2998181.2998362

  43. Raj, S., Lee, J.M., Garrity, A., Newman, M.W.: Clinical data in context: Towards sensemaking tools for interpreting personal health data 3(1) (2019)

    Google Scholar 

  44. Rivera-Pelayo, V., Fessl, A., Müller, L., Pammer, V.: Introducing mood self-tracking at work: Empirical insights from call centers 24(1) (2017)

    Google Scholar 

  45. Rooksby, J., Rost, M., Morrison, A., Chalmers, M.: Personal tracking as lived informatics. In: Proc. of 2014 CHI Conf. on Hum. Fact. in Comp. Sys. p. 1163–1172. CHI ’14, ACM, New York, NY, USA (2014). https://doi.org/10.1145/2556288.2557039

  46. Stamhuis, S., Brombacher, H., Vos, S., Lallemand, C.: Office agents: Personal office vitality sensors with intent. In: 2021 CHI Conf. on Hum. Fact. in Comp. Sys. pp. 1–5. ACM, New York, NY, USA (2021). https://doi.org/10.1145/3411763.3451559

  47. Tenenberg, J., Roth, W.M., Socha, D.: From i-awareness to we-awareness in cscw 25(4–5) (2016)

    Google Scholar 

  48. Toebosch, R.: Improving collaboration experiences and skills: An open-ended, user-driven self-tracking approach for education. In: Proc. of the 17th TEI Conference. ACM, New York, NY, USA (2023). https://doi.org/10.1145/3569009.3576220

  49. Wannamaker, K.A., Kollannur, S.Z.G., Dörk, M., Willett, W.: I/o bits: User-driven, situated, and dedicated self-tracking. In: Proc. 2021 ACM Design. Inter. Sys. Conf.: Nowhere and Everywhere. pp. 523–537. ACM, New York, NY, USA (2021). https://doi.org/10.1145/3461778.3462138

  50. Xue, M., Liang, R.H., Hu, J., Yu, B., Feijs, L.: Understanding how group workers reflect on organizational stress with a shared, anonymous heart rate variability data visualization. In: 2022 CHI Conf. on Hum. Fact. in Comp. Sys. ACM, New York, NY, USA (2022). https://doi.org/10.1145/3491101.3503576

Download references

Acknowledgements

This research has been supported by the Luxembourg National Research Fund (FNR) IPBG2020/IS/14839977/C21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina Lushnikova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lushnikova, A., Bongard-Blanchy, K., Koenig, V., Lallemand, C. (2023). Eliciting Meaningful Collaboration Metrics: Design Implications for Self-Tracking Technologies at Work. In: Abdelnour Nocera, J., Kristín Lárusdóttir, M., Petrie, H., Piccinno, A., Winckler, M. (eds) Human-Computer Interaction – INTERACT 2023. INTERACT 2023. Lecture Notes in Computer Science, vol 14144. Springer, Cham. https://doi.org/10.1007/978-3-031-42286-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42286-7_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42285-0

  • Online ISBN: 978-3-031-42286-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics