“Do I Run Away?”: Proximity, Stress and Discomfort in Human-Drone Interaction in Real and Virtual Environments | SpringerLink
Skip to main content

“Do I Run Away?”: Proximity, Stress and Discomfort in Human-Drone Interaction in Real and Virtual Environments

  • Conference paper
  • First Online:
Human-Computer Interaction – INTERACT 2023 (INTERACT 2023)

Abstract

Social drones are autonomous flying machines designed to operate in inhabited environments. Yet, little is known about how their proximity might impact people’s well-being. This knowledge is critical as drones are often perceived as potential threats due to their design (e.g., visible propellers, unpleasant noise) and capabilities (e.g., moving at high speed, surveillance). In parallel, Virtual Reality (VR) is a promising tool to study human–drone interactions. However, important questions remain as to whether VR is ecologically valid for exploring human–drone interactions. Here, we present a between-within subjects user study (N = 42) showing that participants’ stress significantly differs between different drone states and locations. They felt more comfortable when the drone retreated from their personal space. Discomfort and stress were strongly correlated with the perceived drone’s threat level. Similar findings were found across real and virtual environments. We demonstrate that drones’ behaviour and proximity can threaten peoples’ well-being and comfort, and propose evidence-based guidelines to mitigate these impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abtahi, P., Zhao, D.Y., E, J.L., Landay, J.A.: Drone near me: exploring touch-based human-drone interaction. Proc. ACM IMWUT 1, 1–8 (2017)

    Google Scholar 

  2. Acharya, U., Bevins, A., Duncan, B.A.: Investigation of human-robot comfort with a small Unmanned Aerial Vehicle compared to a ground robot (2017)

    Google Scholar 

  3. Aiello, J.R.: Human Spatial Behavior. Wiley, New York (1987)

    Google Scholar 

  4. Auda, J., Weigel, M., Cauchard, J.R., Schneegass, S.: Understanding drone landing on the human body (2021)

    Google Scholar 

  5. Avila Soto, M., Funk, M.: Look, a guidance drone! Assessing the Social Acceptability of Companion Drones for Blind Travelers in Public Spaces (2018)

    Google Scholar 

  6. Baker, C., Pawling, R., Fairclough, S.: Assessment of threat and negativity bias in virtual reality. Sci. Rep. 10, 17338 (2020)

    Article  Google Scholar 

  7. Baldursson, B., et al.: DroRun: drone visual interactions to mediate a running group (2021)

    Google Scholar 

  8. Baytas, M.A., Çay, D., Zhang, Y., Obaid, M., Yantaç, A.E., Fjeld, M.: The design of social drones: a review of studies on autonomous flyers in inhabited environments (2019)

    Google Scholar 

  9. Belmonte, L., García, A., Morales, R., de la Vara, J.L., Rosa, F., Fernández-Caballero, A.: Feeling of safety and comfort towards a socially assistive unmanned aerial vehicle that monitors people in a virtual home. Sensors 21, 908 (2021)

    Article  Google Scholar 

  10. Bevins, A., Duncan, B.A.: Aerial flight paths for communication: how participants perceive and intend to respond to drone movements (2021)

    Google Scholar 

  11. Blanchard, D.C.: Translating dynamic defense patterns from rodents to people. Neurosci. Biobehav. Rev. 76, 22–28 (2017)

    Article  Google Scholar 

  12. Blanchard, D.C., Griebel, G., Pobbe, R., Blanchard, R.J.: Risk assessment as an evolved threat detection and analysis process. Neurosci. Biobehav. Rev. 35, 991–998 (2011)

    Article  Google Scholar 

  13. Blascovich, J., Loomis, J., Beall, A.C., Swinth, K.R., Hoyt, C.L., Bailenson, J.N.: Immersive virtual environment technology as a methodological tool for social psychology. Psychol. Inq. 13, 104–123 (2002)

    Google Scholar 

  14. Blascovich, J., Tomaka, J.: The biopsychosocial model of arousal regulation. In: Advances in Experimental Social Psychology, vol. 28 (1996)

    Google Scholar 

  15. Bretin, R., Cross, E.S., Khamis, M.: Co-existing with a drone: using virtual reality to investigate the effect of the drone’s height and cover story on proxemic behaviours (2022)

    Google Scholar 

  16. Bufacchi, R.J.: Approaching threatening stimuli cause an expansion of defensive peripersonal space. J. Neurophysiol. 118, 1927–1930 (2017)

    Article  Google Scholar 

  17. Cauchard, J., Gover, W., Chen, W., Cartwright, S., Sharlin, E.: Drones in wonderland-disentangling collocated interaction using radical form. IEEE RA-L (2021)

    Google Scholar 

  18. Cauchard, J.R., E, J.L., Zhai, K.Y., Landay, J.A.: Drone & me: an exploration into natural human-drone interaction (2015)

    Google Scholar 

  19. Cauchard, J.R., Zhai, K.Y., Spadafora, M., Landay, J.: Emotion encoding in Human-Drone Interaction. In: ACM/IEEE HRI (2016)

    Google Scholar 

  20. Chang, V., Chundury, P., Chetty, M.: Spiders in the sky: user perceptions of drones, privacy, and security. In: Proceedings of CHI Conference (2017)

    Google Scholar 

  21. Coello, Y., Bourgeois, J., Iachini, T.: Embodied perception of reachable space: how do we manage threatening objects? Cogn. Process. 13, 131–135 (2012)

    Article  Google Scholar 

  22. Colley, A., Virtanen, L., Knierim, P., Häkkilä, J.: Investigating drone motion as pedestrian guidance. In: MUM 2017. Association for Computing Machinery (2017)

    Google Scholar 

  23. Colley, A., Väyrynen, J., Häkkilä, J.: Exploring the use of virtual environments in an industrial site design process. In: INTERACT (2015)

    Google Scholar 

  24. Cummings, J.J., Bailenson, J.N.: How immersive is enough? A meta-analysis of the effect of immersive technology on user presence. Media Psychol. 19, 272–309 (2016)

    Article  Google Scholar 

  25. Dewez, D., et al.: Influence of personality traits and body awareness on the sense of embodiment in virtual reality (2019)

    Google Scholar 

  26. Diemer, J., Alpers, G.W., Peperkorn, H.M., Shiban, Y., Mühlberger, A.: The impact of perception and presence on emotional reactions: a review of research in virtual reality. Front. Psychol. 6, 25 (2015)

    Article  Google Scholar 

  27. Dosey, M.A., Meisels, M.: Personal space and self-protection. J. Pers. Soc. Psychol. 11, 93 (1969)

    Article  Google Scholar 

  28. Duncan, B.A., Murphy, R.R.: Comfortable approach distance with small Unmanned Aerial Vehicles (2013)

    Google Scholar 

  29. Ellena, G., Bertoni, T., Durand-Ruel, M., Thoresen, J., Sandi, C., Serino, A.: Acute stress affects peripersonal space representation in cortisol stress responders. Psychoneuroendocrinology 142, 105790 (2022)

    Article  Google Scholar 

  30. Endsley, M.R., Connors, E.S.: Situation awareness: state of the art (2008)

    Google Scholar 

  31. Fink, P.W., Foo, P.S., Warren, W.H.: Obstacle avoidance during walking in real and virtual environments. ACM Trans. Appl. Percept. 4, 2 (2007)

    Article  Google Scholar 

  32. Folkman, S., Lazarus, R., Schetter, C., DeLongis, A., Gruen, R.: Dynamics of a stressful encounter: cognitive appraisal, coping, and encounter outcomes. J. Person. Soc. Psychol. 50, 992 (1986)

    Article  Google Scholar 

  33. Gall, D., Roth, D., Stauffert, J.P., Zarges, J., Latoschik, M.E.: Embodiment in virtual reality intensifies emotional responses to virtual stimuli. Front. Psychol. 12, 674179 (2021)

    Article  Google Scholar 

  34. Gamboa, M., Obaid, M., Ljungblad, S.: Ritual drones: designing and studying critical flying companions (2021)

    Google Scholar 

  35. Garcia, J., Brock, A.M.: CandyFly: bringing fun to drone pilots with disabilities through adapted and adaptable interactions (2022)

    Google Scholar 

  36. Gio, N., Brisco, R., Vuletic, T.: Control of a drone with body gestures. Proc. Des. Soc. 1, 761–770 (2021)

    Article  Google Scholar 

  37. Greenberg, S., Marquardt, N., Ballendat, T., Diaz-Marino, R., Wang, M.: Proxemic interactions: the new ubicomp? Interactions 18, 42–50 (2011)

    Article  Google Scholar 

  38. Gunthert, K.C., Cohen, L.H., Armeli, S.: The role of neuroticism in daily stress and coping. J. Person. Soc. Psychol. 77, 1087 (1999)

    Article  Google Scholar 

  39. Hall, E.T.: The Hidden Dimension. New York (1990)

    Google Scholar 

  40. Han, J., Moore, D., Bae, I.: Exploring the social proxemics of human-drone interaction. Int. J. Adv. Smart Convergence 8, 1–7 (2019)

    Google Scholar 

  41. Hayduk, L.A.: Personal space: where we now stand. Psychol. Bull. 94, 293 (1983)

    Article  Google Scholar 

  42. Herdel, V., Kuzminykh, A., Hildebrandt, A., Cauchard, J.R.: Drone in love: emotional perception of facial expressions on flying robots. In: Proceedings of CHI Conference (2021)

    Google Scholar 

  43. Herdel, V., Yamin, L.J., Cauchard, J.R.: Above and beyond: a scoping review of domains and applications for human-drone interaction (2022)

    Google Scholar 

  44. Herdel, V., Yamin, L.J., Ginosar, E., Cauchard, J.R.: Public drone: attitude towards drone capabilities in various contexts (2021)

    Google Scholar 

  45. Interrante, V., Ries, B., Anderson, L.: Distance perception in immersive virtual environments, revisited (2006)

    Google Scholar 

  46. Jensen, W., Hansen, S., Knoche, H.: Knowing you, seeing me: investigating user preferences in drone-human acknowledgement (2018)

    Google Scholar 

  47. Kamide, H., Mae, Y., Takubo, T., Ohara, K., Arai, T.: Direct comparison of psychological evaluation between virtual and real humanoids: personal space and subjective impressions. Int. J. Hum.-Comput. Stud. 72, 451–459 (2014)

    Article  Google Scholar 

  48. Karjalainen, K.D., Romell, A.E.S., Ratsamee, P., Yantac, A.E., Fjeld, M., Obaid, M.: Social drone companion for the home environment: a user-centric exploration (2017)

    Google Scholar 

  49. Kim, B., Kim, H.Y., Kim, J.: Getting home safely with drone (2016)

    Google Scholar 

  50. Leichtmann, B., Nitsch, V.: How much distance do humans keep toward robots? Literature review, meta-analysis, and theoretical considerations on personal space in human-robot interaction. J. Environ. Psychol. 68, 101386 (2020)

    Article  Google Scholar 

  51. Li, R., van Almkerk, M., van Waveren, S., Carter, E., Leite, I.: Comparing human-robot proxemics between virtual reality and the real world (2019)

    Google Scholar 

  52. Lieser, M., Schwanecke, U., Berdux, J.: Evaluating distances in tactile human-drone interaction (2021)

    Google Scholar 

  53. Lieser, M., Schwanecke, U., Berdux, J.: Tactile human-quadrotor interaction: MetroDrone (2021)

    Google Scholar 

  54. Loomis, J.M., Blascovich, J.J., Beall, A.C.: Immersive virtual environment technology as a basic research tool in psychology. Behav. Res. Metho. Instruments Comput. 31, 557–564 (1999)

    Article  Google Scholar 

  55. Lourenco, S.F., Longo, M.R.: The plasticity of near space: evidence for contraction. Cognition 112, 451–456 (2009)

    Article  Google Scholar 

  56. Lucero, A.: Using affinity diagrams to evaluate interactive prototypes. In: Abascal, J., Barbosa, S., Fetter, M., Gross, T., Palanque, P., Winckler, M. (eds.) INTERACT 2015. LNCS, vol. 9297, pp. 231–248. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22668-2_19

    Chapter  Google Scholar 

  57. Mathis, F., Vaniea, K., Khamis, M.: RepliCueAuth: validating the use of a lab-based virtual reality setup for evaluating authentication systems. In: Proceedings of CHI Conference (2021)

    Google Scholar 

  58. McNeil, D., et al.: Fear of pain questionnaire-9: brief assessment of pain-related fear and anxiety. Eur. J. Pain 22, 451–456 (2018)

    Article  Google Scholar 

  59. Messing, R., Durgin, F.H.: Distance perception and the visual horizon in head-mounted displays. ACM Trans. Appl. Percept. 2, 234–250 (2005)

    Article  Google Scholar 

  60. Mäkelä, V., et al.: Virtual field studies: conducting studies on public displays in virtual reality (2020)

    Google Scholar 

  61. Nelson, J., Gorichanaz, T.: Trust as an ethical value in emerging technology governance: the case of drone regulation. Technol. Soc. 59, 101131 (2019)

    Article  Google Scholar 

  62. Nguyen, D.Q., Loianno, G., Ho, V.A.: Towards design of a deformable propeller for drone safety (2020)

    Google Scholar 

  63. Obaid, M., Mubin, O., Brown, S.A., Yantac, A.E., Otsuki, M., Kuzuoka, H.: DroEye: introducing a social eye prototype for drones (2020)

    Google Scholar 

  64. Paquay, M., Goffoy, J., Chevalier, S., Servotte, J.C., Ghuysen, A.: Relationships between internal factors, social factors and the sense of presence in virtual reality-based simulations. Clin. Simul. Nurs. 62, 1–11 (2022)

    Article  Google Scholar 

  65. Patterson, M.L.: An arousal model of interpersonal intimacy. Psychol. Rev. 83, 235 (1976)

    Article  Google Scholar 

  66. Peck, T.C., Gonzalez-Franco, M.: Avatar embodiment. A standardized questionnaire. Front. Virtual Real. 1 (2021)

    Google Scholar 

  67. Perkins, A.M., Corr, P.J.: Reactions to threat and personality: psychometric differentiation of intensity and direction dimensions of human defensive behaviour. Behav. Brain Res. 169, 21–28 (2006)

    Article  Google Scholar 

  68. Rammstedt, B., John, O.P.: Measuring personality in one minute or less: a 10-item short version of the Big Five Inventory in English and German. J. Res. Person. 41, 203–212 (2007)

    Article  Google Scholar 

  69. Rosén, J., Kastrati, G., Reppling, A., Bergkvist, K., Åhs, F.: The effect of immersive virtual reality on proximal and conditioned threat. Sci. Rep. 9, 17407 (2019)

    Article  Google Scholar 

  70. Ruggiero, G., Rapuano, M., Cartaud, A., Coello, Y., Iachini, T.: Defensive functions provoke similar psychophysiological reactions in reaching and comfort spaces. Sci. Rep. 11, 5170 (2021)

    Article  Google Scholar 

  71. Ryan, W.S., Cornick, J., Blascovich, J., Bailenson, J.N.: Virtual reality: whence, how and what for. In: Rizzo, A.S., Bouchard, S. (eds.) Virtual Reality for Psychological and Neurocognitive Interventions. VRTHCA, pp. 15–46. Springer, New York (2019). https://doi.org/10.1007/978-1-4939-9482-3_2

    Chapter  Google Scholar 

  72. Sadka, O., Giron, J., Friedman, D., Zuckerman, O., Erel, H.: Virtual-reality as a simulation tool for non-humanoid social robots (2020)

    Google Scholar 

  73. Sambo, C.F., Iannetti, G.D.: Better safe than sorry? The safety margin surrounding the body is increased by anxiety. J. Neurosci. 33, 14225–14230 (2013)

    Article  Google Scholar 

  74. Scheufele, D.A.: Framing as a theory of media effects. J. Commun. 49, 103–122 (1999)

    Article  Google Scholar 

  75. Schubert, T., Friedmann, F., Regenbrecht, H.: The experience of presence: factor analytic insights. Presence: Teleoper. Virtual Environ. 10, 266–281 (2001)

    Article  Google Scholar 

  76. Shiban, Y., Diemer, J., Brandl, S., Zack, R., Mühlberger, A., Wüst, S.: Trier social stress test in vivo and in virtual reality: dissociation of response domains. Int. J. Psychophysiol. 110, 47–55 (2016)

    Article  Google Scholar 

  77. Skarbez, R., Brooks, F.P., Whitton, M.C.: Immersion and coherence in a stressful virtual environment (2018)

    Google Scholar 

  78. Skarbez, R., Gabbard, J., Bowman, D.A., Ogle, T., Tucker, T.: Virtual replicas of real places: experimental investigations. IEEE Trans. Visual. Comput. Graph. 28, 4594–4608 (2021)

    Article  Google Scholar 

  79. Slater, M.: Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philosoph. Trans. Roy. Soc. B: Biol. Sci. 364, 3549–3557 (2009)

    Article  Google Scholar 

  80. Slater, M., Khanna, P., Mortensen, J., Yu, I.: Visual realism enhances realistic response in an immersive virtual environment. IEEE CG &A 29, 76–84 (2009)

    Google Scholar 

  81. Smolentsev, A., Cornick, J.E., Blascovich, J.: Using a preamble to increase presence in digital virtual environments. Virt. Real. 21, 153–164 (2017)

    Article  Google Scholar 

  82. Spaccasassi, C., Maravita, A.: Peripersonal space is diversely sensitive to a temporary vs permanent state of anxiety. Cognition 195, 104133 (2020)

    Article  Google Scholar 

  83. Spielberger, C.D.: State-trait anxiety inventory. In: The Corsini Encyclopedia of Psychology (2010)

    Google Scholar 

  84. Szafir, D., Mutlu, B., Fong, T.: Communication of intent in assistive free flyers (2014)

    Google Scholar 

  85. Tian, L., et al.: User expectations of robots in public spaces: a co-design methodology. In: Wagner, A.R., et al. (eds.) ICSR 2020. LNCS (LNAI), vol. 12483, pp. 259–270. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62056-1_22

    Chapter  Google Scholar 

  86. Vagnoni, E., Lourenco, S.F., Longo, M.R.: Threat modulates neural responses to looming visual stimuli. Eur. J. Neurosci. 42, 2190–2202 (2015)

    Article  Google Scholar 

  87. de Vignemont, F., Iannetti, G.: How many peripersonal spaces? Neuropsychologia 70, 32–334 (2015)

    Article  Google Scholar 

  88. Waltemate, T., Gall, D., Roth, D., Botsch, M., Latoschik, M.E.: The impact of avatar personalization and immersion on virtual body ownership, presence, and emotional response. IEEE TVCG 24, 1643–1652 (2018)

    Google Scholar 

  89. Welsch, R., Castell, C.V., Hecht, H.: The anisotropy of personal space. PLoS ONE 14, e0217587 (2019)

    Article  Google Scholar 

  90. Williams, T., Szafir, D., Chakraborti, T., Ben Amor, H.: Virtual, augmented, and mixed reality for human-robot interaction. PLOS ONE 14, e0217587 (2018)

    Google Scholar 

  91. Wojciechowska, A., Frey, J., Sass, S., Shafir, R., Cauchard, J.R.: Collocated human-drone interaction: methodology and approach strategy (2019)

    Google Scholar 

  92. Yeh, A., et al.: Exploring proxemics for human-drone interaction (2017)

    Google Scholar 

  93. Zhu, H.Y., Magsino, E.M., Hamim, S.M., Lin, C.T., Chen, H.T.: A drone nearly hit me! A reflection on the human factors of drone collisions (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Bretin .

Editor information

Editors and Affiliations

A Summary Statistics

A Summary Statistics

See Tables 1, 2 and 3.

Table 1. Direct comparison of Real-world and Virtual-Reality measures. This table presents a direct comparison of measures between the real-world and virtual-reality experimental settings. The measures are defined in the Measure subsection of the Method section in the paper. The table includes means, and statistical tests conducted to assess the differences between the two settings. No significant differences were found between the real and virtual experimental settings.
Table 2. Friedman Test for Perceived Stress differences between phases in each environment group, with bonferroni correction for multiple comparisons.
Table 3. Friedman Test for Discomfort levels and Distance ratings Differences Between Stop distances in Each Environment Group, with Bonferroni Correction for Multiple Comparisons.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bretin, R., Khamis, M., Cross, E. (2023). “Do I Run Away?”: Proximity, Stress and Discomfort in Human-Drone Interaction in Real and Virtual Environments. In: Abdelnour Nocera, J., Kristín Lárusdóttir, M., Petrie, H., Piccinno, A., Winckler, M. (eds) Human-Computer Interaction – INTERACT 2023. INTERACT 2023. Lecture Notes in Computer Science, vol 14143. Springer, Cham. https://doi.org/10.1007/978-3-031-42283-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42283-6_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42282-9

  • Online ISBN: 978-3-031-42283-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics