MUGS: A Multiple Granularity Semi-supervised Method for Text Recognition | SpringerLink
Skip to main content

MUGS: A Multiple Granularity Semi-supervised Method for Text Recognition

  • Conference paper
  • First Online:
Document Analysis and Recognition - ICDAR 2023 (ICDAR 2023)

Abstract

Most text recognition methods are trained on large amounts of labeled data. Although text images are easily accessible, labeling them is costly. Thus how to utilize the unlabeled data is worth studying. In this paper, we propose a MUltiple Granularity Semi-supervised (MUGS) method using both labeled and unlabeled data for text recognition. Inspired by the hierarchical structure (sentence-word-character) of text, we apply semi-supervised learning at both word-level and character-level. Specifically, a Dynamic Aggregated Self-training (DAS) framework is introduced to generate pseudo-labels from unlabeled data at word-level. To ensure the quality and stability of the pseudo-labeling procedure, the pseudo-labels are aggregated from one dynamic model queue which keeps updating in the whole semi-supervised training process. At the character-level, a novel module named WTC (Word To Character) that can convert sequential features to character representations is invented. Next, contrastive learning is applied to these character representations for better fine-grained visual modeling. The characters from various images that share the same classes are pulled together and the ones in different classes are set far apart in the representation space. With the combination of supervisions in different granularities, more information can be exploited from the unlabeled data. The effectiveness and robustness of the model are enhanced by a large margin. Comprehensive experiments on several public benchmarks validate our method and competitive performance is achieved with much fewer labeled data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 16015
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 20019
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aberdam, A., et al.: Sequence-to-sequence contrastive learning for text recognition. In: CVPR (2021)

    Google Scholar 

  2. Alex, G., Santiago, F., Faustino, G., Jürgen, S.: Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In: ICML (2006)

    Google Scholar 

  3. Anhar, R., Palaiahankote, S., Seng, C.C., Lim, T.C.: A robust arbitrary text detection system for natural scene images. Expert Syst. Appl. 41, 8027–8048 (2014)

    Article  Google Scholar 

  4. Baek, J., Matsui, Y., Aizawa, K.: What if we only use real datasets for scene text recognition? toward scene text recognition with fewer labels. In: CVPR (2021)

    Google Scholar 

  5. Shi, B., Yang, M., Wang, X., Lyu, P., Yao, C., Bai, X.: Aster: an attentional scene text recognizer with flexible rectification. TPAMI 41, 2035–2048 (2018)

    Article  Google Scholar 

  6. Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. TPAMI 39, 2298–2304 (2016)

    Article  Google Scholar 

  7. Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. TPAMI 39, 2298–2304 (2017)

    Article  Google Scholar 

  8. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.A.: Mixmatch: a holistic approach to semi-supervised learning. In: NIPS (2019)

    Google Scholar 

  9. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML (2020)

    Google Scholar 

  10. Chen-Yu, L., Simon, O.: Recursive recurrent nets with attention modeling for ocr in the wild. In: CVPR (2016)

    Google Scholar 

  11. Ch’ng, C.K., Chan, C.S., Liu, C.: Total-text: towards orientation robustness in scene text detection. IJDAR 23, 31–52 (2020)

    Article  Google Scholar 

  12. Yao, C., Bai, X., Shi, B., Liu, W.: Strokelets: a learned multi-scale representation for scene text recognition. In: CVPR (2014)

    Google Scholar 

  13. Yao, C., Bai, X., Liu, W.: A unified framework for multioriented text detection and recognition. TIP 23, 4737–4749 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Yu, D., et al.: Towards accurate scene text recognition with semantic reasoning networks. In: CVPR (2020)

    Google Scholar 

  15. Dong-Dong, C., Wei, W., Wei, G., ZhiHua, Z.: Tri-net for semi-supervised deep learning. In: IJCAI (2018)

    Google Scholar 

  16. Gupta, A., Vedaldi, A., Zisserman, A.: Synthetic data for text localisation in natural images. In: CVPR (2016)

    Google Scholar 

  17. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: CVPR (2006)

    Google Scholar 

  18. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR (2020)

    Google Scholar 

  19. Li, H., Wang, P., Shen, C., Zhang, G.: Show, attend and read: a simple and strong baseline for irregular text recognition. In: AAAI (2019)

    Google Scholar 

  20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  21. Karatzas, D., et al.: Icdar 2015 competition on robust reading. In: ICDAR (2015)

    Google Scholar 

  22. Karatzas, D., et al.: Icdar 2013 robust reading competition. In: ICDAR (2013)

    Google Scholar 

  23. Kim, S., Kim, D., Cho, M., Kwak, S.: Proxy anchor loss for deep metric learning. In: CVPR (2020)

    Google Scholar 

  24. Lee, D.H.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: ICML (2013)

    Google Scholar 

  25. Litman, R., Anschel, O., Tsiper, S., Litman, R., Mazor, S., Manmatha, R.: Scatter: selective context attentional scene text recognizer. In: CVPR (2020)

    Google Scholar 

  26. Lucas, S.M., et al.: ICDAR 2003 robust reading competitions: entries, results and future directions. In: IJDAR (2005)

    Google Scholar 

  27. Luo, C., Jin, L., Chen, J.: Siman: exploring self-supervised representation learning of scene text via similarity-aware normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1039–1048 (2022)

    Google Scholar 

  28. Lyu, P., Yang, Z., Leng, X., Wu, X., Li, R., Shen, X.: 2D attentional irregular scene text recognizer (2019). CoRR abs/1906.05708. http://arxiv.org/abs/1906.05708

  29. Max, J., Karen, S., Andrea, V., Andrew, Z.: Synthetic data and artificial neural networks for natural scene text recognition (2014). CoRR. http://arxiv.org/abs/1406.2227

  30. Mishra, A., Alahari, K., Jawahar, C.: Scene text recognition using higher order language priors. In: BMVC (2012)

    Google Scholar 

  31. Neumann, L., Matas, J.: Real-time scene text localization and recognition. In: CVPR (2012)

    Google Scholar 

  32. Song, Q., Jiang, Q., Li, N., Zhang, R., Wei, X.: Reads: a rectified attentional double supervised network for scene text recognition. In: ICPR (2020)

    Google Scholar 

  33. Jiang, Q., Song, Q., Li, N., Zhang, R., Wei, X.: Heterogeneous network based semi-supervised learning for scene text recognition. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12824, pp. 64–78. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86337-1_5

    Chapter  Google Scholar 

  34. Xie, Q., Dai, Z., Hovy, E., Luong, T., Le, Q.: Unsupervised data augmentation for consistency training. In: NIPS (2020)

    Google Scholar 

  35. Phan, T.Q., Shivakumara, P., Tian, S., Tan, C.L.: Recognizing text with perspective distortion in natural scenes. In: ICCV (2013)

    Google Scholar 

  36. Fang, S., Xie, H., Wang, Y., Mao, Z., Zhang, Y.: Read like humans: autonomous, bidirectional and iterative language modeling for scene text recognition. In: CVPR (2021)

    Google Scholar 

  37. Qiao, S., Shen, W., Zhang, Z., Wang, B., Yuille, A.: Deep co-training for semi-supervised image recognition. In: ECCV (2018)

    Google Scholar 

  38. Sohn, K., et al.: Fixmatch: simplifying semi-supervised learning with consistency and confidence. In: NIPS (2020)

    Google Scholar 

  39. Triguero, I., García, S., Herrera, F.: Self-labeled techniques for semi-supervised learning: taxonomy, software and empirical study. Knowl. Inf. Syst. 42, 245–284 (2015)

    Article  Google Scholar 

  40. Vaswani, A., et al.: Attention is all you need. In: NIPS (2017)

    Google Scholar 

  41. Wang, K., Babenko, B., Belongie, S.: End-to-end scene text recognition. In: ICCV (2011)

    Google Scholar 

  42. Yalniz, I.Z., Jégou, H., Chen, K., Paluri, M., Mahajan, D.: Billion-scale semi-supervised learning for image classification (2019). CoRR abs/1905.00546, http://arxiv.org/abs/1905.00546

  43. Yang, M., et al.: Reading and writing: discriminative and generative modeling for self-supervised text recognition. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 4214–4223 (2022)

    Google Scholar 

  44. Sun, Y., et al.: Circle loss: a unified perspective of pair similarity optimization. In: CVPR (2020)

    Google Scholar 

  45. Gao, Y., Chen, Y., Wang, J., Lu, H.: Semi-supervised scene text recognition. TIP 30, 3005–3016 (2021)

    MathSciNet  Google Scholar 

  46. Gao, Y., Huang, Z., Dai, Y., Xu, C., Chen, K., Tuo, J.: Double supervised network with attention mechanism for scene text recognition (2018). CoRR abs/1808.00677, http://arxiv.org/abs/1808.00677

  47. Zeiler, M.D.: Adadelta: an adaptive learning rate method. Comput. Sci. (2012)

    Google Scholar 

  48. Zhang, X., Zhu, B., Yao, X., Sun, Q., Li, R., Yu, B.: Context-based contrastive learning for scene text recognition. In: AAAI (2022)

    Google Scholar 

  49. Zheng, C., et al.: Pushing the performance limit of scene text recognizer without human annotation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14116–14125 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianyi Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, Q., Jiang, Q., Wang, L., Zhao, L., Zhang, R. (2023). MUGS: A Multiple Granularity Semi-supervised Method for Text Recognition. In: Fink, G.A., Jain, R., Kise, K., Zanibbi, R. (eds) Document Analysis and Recognition - ICDAR 2023. ICDAR 2023. Lecture Notes in Computer Science, vol 14191. Springer, Cham. https://doi.org/10.1007/978-3-031-41734-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41734-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41733-7

  • Online ISBN: 978-3-031-41734-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics