Abstract
Autonomous control systems are used in an open environment where humans exist. Therefore, a safety design needs to be created corresponding to evolutions and changes in the behavior of humans and machines in accordance with an open changing environment. In this study, we propose a structure and derivation method of safety rules based on a pairing structure for the cooperation of humans and machines, which can facilitate feature updates and evolutions in the behavior of humans and machines. For a feature update, feature trees utilizing methods of software product line correspond to the evolution of behavior of a human and a machine by using a pairing safety rule structure.
The results of a case study simulating autonomous driving systems and pedestrians in a city showed that the proposed safety rule structure can facilitate rule switching when features change. The results also showed that human-machine cooperation efficiency could be improved and safety maintained by operation following the change of safety rules in accordance with the proposed structure when the behavior of pedestrians and autonomous vehicles evolved.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Tsutsumi, K., van Gulijk, C.: Safety in the future: whitepaper (2020)
Drabek, C., Kosmalska, A., Weiss, G., Ishigooka, T., Otsuka, S., Mizuochi, M.: Safe interaction of automated forklifts and humans at blind corners in a warehouse with infrastructure sensors. In: Habli, I., Sujan, M., Bitsch, F. (eds.) Computer Safety, Reliability, and Security, SAFECOMP 2021, vol. 12852, pp. 163–177. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-83903-1_11
Ishigooka, T., Yamada, H., Otsuka, S., Kanekawa, N., Takahashi, J.: Symbiotic safety: safe and efficient human-machine collaboration by utilizing rules. In: 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 280–281. IEEE (2022)
ISO: Safety of machinery -Basic concepts, general ISO12100–1:2003 (2003)
IEC 61508 ed2.0, Functional safety of electrical/electronic/programmable electronic safety-related systems (2010)
ISO: Road vehicles - functional safety. Standard ISO 26262:2018 (2018)
ISO: Road vehicles - safety of the intended functionality. Standard ISO/PAS 21448:2019(E) (2019)
Leveson, N.: A new accident model for engineering safer systems. Saf. Sci. 42(4), 237–270 (2004)
Censi, A., et al.: Liability, ethics, and culture-aware behavior specification using rulebooks. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 8536–8542. IEEE (2019)
Collin, A., Bilka, A., Pendleton, S., Tebbens, R.D.: Safety of the intended driving behavior using rulebooks. In: 2020 IEEE Intelligent Vehicles Symposium (IV), pp. 136–143. IEEE (2020)
Shalev-Shwartz, S., Shammah, S., Shashua, A.: On a formal model of safe and scalable self-driving cars. arXiv preprint arXiv:1708.06374 (2017)
Oboril, F., Scholl, K.U.: RSS+: pro-active risk mitigation for AV safety layers based on RSS. In: 2021 IEEE Intelligent Vehicles Symposium (IV), pp. 99–106. IEEE (2021)
Pohl, K., Böckle, G., Van Der Linden, F.: Software Product Line Engineering, vol. 10, pp. 3–540. Springer Heidelberg (2005). https://doi.org/10.1007/3-540-28901-1
Dehlinger, J., Lutz, R.R.: Software fault tree analysis for product lines. In: Eighth IEEE International Symposium on High Assurance Systems Engineering, 2004. Proceedings, pp. 12–21. IEEE (2004)
Bressan, L., et al.: Modeling the variability of system safety analysis using state-machine diagrams. In: Seguin, C., Zeller, M., Prosvirnova, T. (eds.) Model-Based Safety and Assessment, IMBSA 2022, pp. 43–59. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15842-1_4
DEOS white paper. https://www.jst.go.jp/crest/crest-os/osddeos/data/DEOS-FY2011-WP-03E.pdf. Accessed 20 Dec 2022
Michel, O.: Cyberbotics Ltd. Webots™: professional mobile robot simulation. Int. J. Adv. Rob. Syst. 1(1), 5 (2004)
Schneider, D., Trapp, M.: Conditional safety certification of open adaptive systems. ACM Trans. Auton. Adapt. Syst. (TAAS) 8(2), 1–20 (2013)
Reich, J., Trapp, M.: SINADRA: towards a framework for assurable situation-aware dynamic risk assessment of autonomous vehicles. In: 2020 16th European Dependable Computing Conference (EDCC), pp. 47–50. IEEE (2020)
Reich, J., et al.: Engineering dynamic risk and capability models to improve cooperation efficiency between human workers and autonomous mobile robots in shared spaces. In: Seguin, C., Zeller, M., Prosvirnova, T. (eds.) Model-Based Safety and Assessment, IMBSA 2022, vol. 13525, pp. 237–251. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15842-1_17
Digital Dependability Identities and the Open Dependability Exchange Meta-Model. https://deis-project.eu/fileadmin/user_upload/DEIS_D3.1_Specification_of_the_ODE_metamodel_and_documentation_of_the_fundamental_concept_of_DDI_PU.pdf. Accessed 20 Dec 2022
Schneider, D., Trapp, M., Papadopoulos, Y., Armengaud, E., Zeller, M., Höfig, K.: WAP: digital dependability identities. In: 2015 IEEE 26th International Symposium on Software Reliability Engineering (ISSRE), pp. 324–329. IEEE (2015)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Otsuka, S. et al. (2023). Paired Safety Rule Structure for Human-Machine Cooperation with Feature Update and Evolution. In: Guiochet, J., Tonetta, S., Schoitsch, E., Roy, M., Bitsch, F. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2023 Workshops. SAFECOMP 2023. Lecture Notes in Computer Science, vol 14182. Springer, Cham. https://doi.org/10.1007/978-3-031-40953-0_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-40953-0_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-40952-3
Online ISBN: 978-3-031-40953-0
eBook Packages: Computer ScienceComputer Science (R0)