Enhancing Wearable Technologies for Dementia Care: A Cognitive Architecture Approach | SpringerLink
Skip to main content

Enhancing Wearable Technologies for Dementia Care: A Cognitive Architecture Approach

  • Conference paper
  • First Online:
Explainable and Transparent AI and Multi-Agent Systems (EXTRAAMAS 2023)

Abstract

Activities of Daily Living (ADLs) are often disrupted in patients suffering from dementia due to a well-known taxonomy of errors. Wearable technologies have increasingly been used to monitor, diagnose, and assist these patients. The present paper argues that the benefits current and future wearable devices provide to dementia patients could be enhanced with cognitive architectures. It proposes such an architecture, establishing connections between modalities within the architecture and common errors made by dementia patients while engaging in ADLs. The paper contends that such a model could offer continuous diagnostic monitoring for both patients and caregivers, while also facilitating a more transparent patient experience regarding their condition, potentially influencing their activities. Concurrently, such a system could predict patient errors, thus offering corrective guidance before an error occurs. This system could significantly improve the well-being of dementia patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6634
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8293
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Intention is the cognitive process by which people decide on and commit to an action. Action is the physical process of executing an intention.

References

  1. Bermúdez, J.L.: Cognitive Science: An Introduction to the Science of the Mind. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  2. Cao, Y., Chen, H., Li, F., Yang, S., Wang, Y.: AWash: handwashing assistance for the elderly with dementia via wearables. In: IEEE Conference on Computer Communications, IEEE INFOCOM 2021, pp. 1–10. IEEE (2021)

    Google Scholar 

  3. Choi, D., Langley, P.: Evolution of the ICARUS cognitive architecture. Cogn. Syst. Res. 48, 25–38 (2018)

    Article  Google Scholar 

  4. Cote, A.C., Phelps, R.J., Kabiri, N.S., Bhangu, J.S., Thomas, K.: Evaluation of wearable technology in dementia: a systematic review and meta-analysis. Front. Med. 7, 501104 (2021)

    Article  Google Scholar 

  5. Custodio, N., Montesinos, R., Lira, D., Herrera-Pérez, E., Bardales, Y., Valeriano-Lorenzo, L.: Mixed dementia: a review of the evidence. Dement. Neuropsychologia 11, 364–370 (2017)

    Article  Google Scholar 

  6. De Jager, D., et al.: A low-power, distributed, pervasive healthcare system for supporting memory. In: Proceedings of the First ACM MobiHoc Workshop on Pervasive Wireless Healthcare, pp. 1–7 (2011)

    Google Scholar 

  7. Deary, I.J., et al.: Age-associated cognitive decline. Br. Med. Bull. 92(1), 135–152 (2009)

    Article  Google Scholar 

  8. Franklin, M., Lagnado, D., Min, C., Mathur, A., Kawsar, F.: Designing memory aids for dementia patients using earables. In: Adjunct Proceedings of the 2021 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2021 ACM International Symposium on Wearable Computers, pp. 152–157 (2021)

    Google Scholar 

  9. Franklin, S., Madl, T., D’mello, S., Snaider, J.: LIDA: a systems-level architecture for cognition, emotion, and learning. IEEE Trans. Autonom. Mental Develop. 6(1), 19–41 (2013)

    Article  Google Scholar 

  10. Galea, M., Woodward, M.: Mini-mental state examination (MMSE). Aust. J. Physiotherapy 51(3), 198 (2005)

    Article  Google Scholar 

  11. Godfrey, A., Brodie, M., van Schooten, K., Nouredanesh, M., Stuart, S., Robinson, L.: Inertial wearables as pragmatic tools in dementia. Maturitas 127, 12–17 (2019)

    Article  Google Scholar 

  12. Hassan, L., et al.: Tea, talk and technology: patient and public involvement to improve connected health ‘wearables’ research in dementia. Res. Involvement Engagem. 3(1), 1–17 (2017)

    Article  MathSciNet  Google Scholar 

  13. Hodges, S., et al.: SenseCam: a retrospective memory aid. In: Dourish, Paul, Friday, Adrian (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 177–193. Springer, Heidelberg (2006). https://doi.org/10.1007/11853565_11

    Chapter  Google Scholar 

  14. Kempner, Danielle, Hall, Martha L.: The CueMinder project: patient-driven wearable technology to improve quality of life. In: Gargiulo, Gaetano D., Naik, Ganesh R. (eds.) Wearable/Personal Monitoring Devices Present to Future, pp. 231–238. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-5324-7_9

    Chapter  Google Scholar 

  15. Kieras, D.E.: A summary of the EPIC cognitive architecture. In: The Oxford Handbook of Cognitive Science, vol. 1, p. 24 (2016)

    Google Scholar 

  16. Konar, A., Singh, P., Thakur, M.K.: Age-associated cognitive decline: insights into molecular switches and recovery avenues. Aging Dis. 7(2), 121 (2016)

    Article  Google Scholar 

  17. Kwan, C.L., Mahdid, Y., Ochoa, R.M., Lee, K., Park, M., Blain-Moraes, S.: Wearable technology for detecting significant moments in individuals with dementia. BioMed. Res. Int. 2019, 6515813 (2019)

    Google Scholar 

  18. Laird, J.E.: The Soar Cognitive Architecture. MIT Press (2019)

    Google Scholar 

  19. Lim, J.: A smart healthcare-based system for classification of dementia using deep learning. Digit. Health 8, 20552076221131668 (2022)

    Google Scholar 

  20. Livingston, G., et al.: Dementia prevention, intervention, and care: 2020 report of the lancet commission. Lancet 396(10248), 413–446 (2020)

    Article  Google Scholar 

  21. Mc Ardle, R., Del Din, S., Galna, B., Thomas, A., Rochester, L.: Differentiating dementia disease subtypes with gait analysis: feasibility of wearable sensors? Gait Posture 76, 372–376 (2020)

    Article  Google Scholar 

  22. Mohamedali, F., Matoorian, N.: Support dementia: using wearable assistive technology and analysing real-time data. In: 2016 International Conference on Interactive Technologies and Games (ITAG), pp. 50–54 (2016). https://doi.org/10.1109/iTAG.2016.15

  23. Nordlund, A., Påhlsson, L., Holmberg, C., Lind, K., Wallin, A.: The cognitive assessment battery (CAB): a rapid test of cognitive domains. Int. Psychogeriatr. 23(7), 1144–1151 (2011)

    Article  Google Scholar 

  24. Raj, A., Kuceyeski, A., Weiner, M.: A network diffusion model of disease progression in dementia. Neuron 73(6), 1204–1215 (2012)

    Article  Google Scholar 

  25. Rapp, S.R., et al.: Validation of a cognitive assessment battery administered over the telephone. J. Am. Geriatr. Soc. 60(9), 1616–1623 (2012)

    Article  Google Scholar 

  26. Ray, P.P., Dash, D., De, D.: A systematic review and implementation of IoT-based pervasive sensor-enabled tracking system for dementia patients. J. Med. Syst. 43(9), 1–21 (2019)

    Article  Google Scholar 

  27. Ray, S., Davidson, S.: Dementia and Cognitive Decline. A Review of the Evidence, vol. 27, pp. 10–12 (2014)

    Google Scholar 

  28. Rhodes, B.J.: The wearable remembrance agent: a system for augmented memory. Pers. Technol. 1(4), 218–224 (1997)

    Article  Google Scholar 

  29. Ritter, F.E., Tehranchi, F., Oury, J.D.: ACT-R: a cognitive architecture for modeling cognition. Wiley Interdisc. Rev. Cogn. Sci. 10(3), e1488 (2019)

    Article  Google Scholar 

  30. Siri, S., Divyashree, H., Mala, S.P.: The memorable assistant: an IoT-based smart wearable Alzheimer’s assisting device. In: 2021 IEEE International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS), pp. 1–7. IEEE (2021)

    Google Scholar 

  31. Stavropoulos, T.G., et al.: Wearable devices for assessing function in Alzheimer’s disease: a European public involvement activity about the features and preferences of patients and caregivers. Front. Aging Neurosci. 13, 643135 (2021)

    Article  Google Scholar 

  32. Sun, R.: Anatomy of the Mind: Exploring Psychological Mechanisms and Processes with the Clarion Cognitive Architecture. Oxford University Press, Oxford (2016)

    Google Scholar 

  33. Tombaugh, T., McDowell, I., Kristjansson, B., Hubley, A.: Mini-mental state examination (MMSE) and the modified MMSE (3MS): a psychometric comparison and normative data. Psychol. Assess. 8(1), 48 (1996)

    Article  Google Scholar 

  34. Tschanz, J.T., et al.: Progression of cognitive, functional, and neuropsychiatric symptom domains in a population cohort with Alzheimer dementia: the cache county dementia progression study. Am. J. Geriatr. Psychiatry 19(6), 532–542 (2011)

    Article  Google Scholar 

  35. Wherton, J.P., Monk, A.F.: Problems people with dementia have with kitchen tasks: the challenge for pervasive computing. Interact. Comput. 22(4), 253–266 (2010)

    Article  Google Scholar 

  36. Yang, P., Bi, G., Qi, J., Wang, X., Yang, Y., Xu, L.: Multimodal wearable intelligence for dementia care in healthcare 4.0: a survey. Inf. Syst. Front., 1–18 (2021). https://doi.org/10.1007/s10796-021-10163-3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matija Franklin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Franklin, M., Lagnado, D., Min, C., Mathur, A., Kawsar, F. (2023). Enhancing Wearable Technologies for Dementia Care: A Cognitive Architecture Approach. In: Calvaresi, D., et al. Explainable and Transparent AI and Multi-Agent Systems. EXTRAAMAS 2023. Lecture Notes in Computer Science(), vol 14127. Springer, Cham. https://doi.org/10.1007/978-3-031-40878-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40878-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40877-9

  • Online ISBN: 978-3-031-40878-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics