Evaluating Quantum Algorithms for Linear Solver Workflows | SpringerLink
Skip to main content

Evaluating Quantum Algorithms for Linear Solver Workflows

  • Conference paper
  • First Online:
High Performance Computing (ISC High Performance 2023)

Abstract

We normally think of implicit Mechanical Computer Aided Engineering (MCAE) as being a resource intensive process, dominated by multifrontal linear solvers that scale super linearly in complexity as the problem size grows. However, as the processor count increases, the reordering that reduces the storage and operation count for the sparse linear solver is emerging as the biggest computational bottleneck and is expected to grow. Reordering is NP-complete, and the nested dissection heuristic is generally preferred for MCAE problems. Nested dissection in turn rests on graph partitioning, another NP-complete problem. There are quantum computing algorithms which provide new heuristics for NP-complete problems, and the rapid growth of today’s noisy quantum computers and associated error mitigation techniques leads us to consider them as possible accelerators for reordering. This review reports on the evaluation of the relative merits of several short depth quantum algorithms used for graph partitioning, integration with the LS-DYNA MCAE application, and using the initial results generated on IBM quantum computers to bring to attention critical focus areas based on the methods used within.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. https://www.ibm.com/quantum/roadmap

  2. Barnard, S.T., Simon, H.D.: A fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems. In: Proceedings of the Sixth SIAM Conference on Parallel Processing for Scientific Computing, PPSC 1993, Norfolk, Virginia, USA, 22–24 March 1993, pp. 711–718. SIAM (1993)

    Google Scholar 

  3. Van Den Berg, E., Minev, Z.K., Temme, K.: Model-free readout-error mitigation for quantum expectation values (2020). https://doi.org/10.48550/ARXIV.2012.09738. https://arxiv.org/abs/2012.09738

  4. Bravo-Prieto, C., LaRose, R., Cerezo, M., Subasi, Y., Cincio, L., Coles, P.J.: Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019)

  5. Bui, T.N., Jones, C.: A heuristic for reducing fill-in in sparse matrix factorization. In: Proceedings of the Sixth SIAM Conference on Parallel Processing for Scientific Computing, PPSC 1993, Norfolk, Virginia, USA, 22–24 March 1993, pp. 445–452. SIAM (1993)

    Google Scholar 

  6. Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nat. Commun. 12(1), 1–12 (2021)

    Article  Google Scholar 

  7. Chang, J.B.: Improved superconducting qubit coherence using titanium nitride. Appl. Phys. Lett. 103(1), 012602 (2013)

    Article  Google Scholar 

  8. Davis, T.A., Hu, Y.: The university of Florida sparse matrix collection. ACM Trans. Math. Softw. 38(1), 1–25 (2011). https://doi.org/10.1145/2049662.2049663

    Article  MathSciNet  MATH  Google Scholar 

  9. Du, Y., Hsieh, M.H., Liu, T., Tao, D.: Expressive power of parametrized quantum circuits. Phys. Rev. Res. 2(3), 033125 (2020)

    Article  Google Scholar 

  10. Egger, D.J., Mareček, J., Woerner, S.: Warm-starting quantum optimization. Quantum 5, 479 (2021)

    Article  Google Scholar 

  11. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014)

  12. Fuller, B., et al.: Approximate solutions of combinatorial problems via quantum relaxations. arXiv preprint arXiv:2111.03167 (2021)

  13. George, A.: Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10(2), 345–363 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ghysels, P., Li, X.S., Chávez, G., Liu, Y., Jacquelin, M., Ng, E.: Preconditioning using rank-structured sparse matrix factorization. In: SIAM Conference on Computational Science and Engineering (2019)

    Google Scholar 

  15. Glover, F., Kochenberger, G., Du, Y.: A tutorial on formulating and using QUBO models (2018). https://doi.org/10.48550/ARXIV.1811.11538. https://arxiv.org/abs/1811.11538

  16. Grover, L.K.: A fast quantum mechanical algorithm for database search. In Proceedings of the 28th ACM Symposium on the Theory of Computing, pp. 212–219 (1996)

    Google Scholar 

  17. Kandala, A., et al.: Hardware-efficient variational quantum Eigensolver for small molecules and quantum magnets. Nature 549(7671), 242–246 (2017)

    Article  Google Scholar 

  18. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lloyd, S.: Quantum algorithm for solving linear systems of equations. In: APS March Meeting Abstracts, vol. 2010, pp. D4–002 (2010)

    Google Scholar 

  20. Lucas, A.: Ising formulations of many np problems. Front. Phys. 2, 5 (2014)

    Article  Google Scholar 

  21. Lucas, R.F., et al.: Implicit analysis of jet engine models on thousands of processors. In: Sparse Days (2019)

    Google Scholar 

  22. Markowitz, H.M.: The elimination form of the inverse and its application to linear programming. Manage. Sci. 3(3), 255–269 (1957). http://www.jstor.org/stable/2627454

  23. Montanaro, A., Pallister, S.: Quantum algorithms and the finite element method. Phys. Rev. A 93(3), 032324 (2016)

    Article  Google Scholar 

  24. Pan, V.: Complexity of algorithms for linear systems of equations. In: Spedicato, E. (ed.) Computer Algorithms for Solving Linear Algebraic Equations. NATO ASI Series, vol. 77, pp. 27–56. Springer, Berlin (1991). https://doi.org/10.1007/978-3-642-76717-3_2

    Chapter  Google Scholar 

  25. Peruzzo, A., et al.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5(1), 4213 (2014). https://doi.org/10.1038/ncomms5213

    Article  Google Scholar 

  26. Polina, B., Arthur, S., Yuriy, Z., Manhong, Y., Dingshun, l.: Hot-start optimization for variational quantum Eigensolver (2021). https://doi.org/10.48550/ARXIV.2104.15001. https://arxiv.org/abs/2104.15001

  27. Teramoto, K., Raymond, R., Wakakuwa, E., Imai, H.: Quantum-relaxation based optimization algorithms: theoretical extensions. arXiv preprint arXiv:2302.09481 (2023)

  28. Wallraff, A., et al.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431(7005), 162–167 (2004)

    Article  Google Scholar 

  29. Wang, S.: Noise-induced barren plateaus in variational quantum algorithms. Nat. Commun. 12(1), 1–11 (2021)

    Article  Google Scholar 

  30. Wiesner, S.: Conjugate coding. ACM SIGACT News 15, 77–78 (1983)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge use of the IBM Quantum devices for this work. The authors are also thankful to Bryce Fuller, Stefan Woerner, Rudy Raymond, Paul Nation and Antonio Mezzacapo for insightful discussions and Johannes Greiner, Stefan Woerner and Paul Nation for a careful read of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert F. Lucas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kolak, S. et al. (2023). Evaluating Quantum Algorithms for Linear Solver Workflows. In: Bienz, A., Weiland, M., Baboulin, M., Kruse, C. (eds) High Performance Computing. ISC High Performance 2023. Lecture Notes in Computer Science, vol 13999. Springer, Cham. https://doi.org/10.1007/978-3-031-40843-4_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40843-4_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40842-7

  • Online ISBN: 978-3-031-40843-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics