Joint Community and Structural Hole Spanner Detection via Graph Contrastive Learning | SpringerLink
Skip to main content

Joint Community and Structural Hole Spanner Detection via Graph Contrastive Learning

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14120))

  • 1115 Accesses

Abstract

Structural hole spanners are nodes in a network that connect different communities, which are located on key information paths and control information flow between different communities, and therefore have an important status from the perspective of network analysis. Due to its definition, the detection of structural hole spanners relies on the partitioning of subgraph or community structures in network, but most existing methods for detecting structural hole spanner rely on known community labels or complex global search, which are difficult to apply to large-scale real-world networks without labels. To address the aforementioned challenges, inspired by success of graph contrastive learning, we propose a self-supervised method for jointly detecting community and structural hole spanner, i.e., a Augmentation-Free contrastive learning framework for jointly detecting Community and structural hole spanner, named AF-Comm. Experimental results on multiple real-world networks demonstrate the superiority of our algorithm on both community detection and structural hole spanner detection tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8464
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barnard, S.T., Simon, H.D.: Fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems. Concurr. Practi. Exp. 6(2), 101–117 (1994)

    Google Scholar 

  2. Bielak, P., Kajdanowicz, T., Chawla, N.V.: Graph Barlow twins: a self-supervised representation learning framework for graphs. Knowl.-Based Syst. 256, 109631 (2022)

    Article  Google Scholar 

  3. Burt, R.S.: Structural Holes: The Social Structure of Competition. Harvard University Press (1995)

    Google Scholar 

  4. Burt, R.S., Kilduff, M., Tasselli, S.: Social network analysis: foundations and frontiers on advantage. Annu. Rev. Psychol. 64, 527–547 (2013)

    Article  Google Scholar 

  5. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  6. Giles, C.L., Bollacker, K.D., Lawrence, S.: Citeseer: an automatic citation indexing system. In: Proceedings of the Third ACM Conference on Digital Libraries, pp. 89–98 (1998)

    Google Scholar 

  7. Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. Adv. Neural. Inf. Process. Syst. 33, 21271–21284 (2020)

    Google Scholar 

  9. Guo, X., Gao, L., Liu, X., Yin, J.: Improved deep embedded clustering with local structure preservation. In: IJCAI, pp. 1753–1759 (2017)

    Google Scholar 

  10. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  11. He, L., Lu, C.T., Ma, J., Cao, J., Shen, L., Yu, P.S.: Joint community and structural hole spanner detection via harmonic modularity. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 875–884 (2016)

    Google Scholar 

  12. Hjelm, R.D., et al.: Learning deep representations by mutual information estimation and maximization. arXiv preprint arXiv:1808.06670 (2018)

  13. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  14. Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint arXiv:1611.07308 (2016)

  15. Lee, N., Lee, J., Park, C.: Augmentation-free self-supervised learning on graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 7372–7380 (2022)

    Google Scholar 

  16. Li, F., Zou, Z., Li, J., Li, Y., Chen, Y.: Distributed parallel structural hole detection on big graphs. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds.) DASFAA 2019. LNCS, vol. 11446, pp. 519–535. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18576-3_31

    Chapter  Google Scholar 

  17. Lin, S., Hu, Q., Wang, G., Yu, P.S.: Understanding community effects on information diffusion. In: Cao, T., Lim, E.-P., Zhou, Z.-H., Ho, T.-B., Cheung, D., Motoda, H. (eds.) PAKDD 2015. LNCS (LNAI), vol. 9077, pp. 82–95. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18038-0_7

    Chapter  Google Scholar 

  18. Lou, T., Tang, J.: Mining structural hole spanners through information diffusion in social networks. In: Proceedings of the 22nd international conference on World Wide Web, pp. 825–836 (2013)

    Google Scholar 

  19. Ma, X., et al.: A comprehensive survey on graph anomaly detection with deep learning. IEEE Trans. Knowl. Data Eng. (2021)

    Google Scholar 

  20. McCallum, A.K., Nigam, K., Rennie, J., Seymore, K.: Automating the construction of internet portals with machine learning. Inf. Retrieval 3, 127–163 (2000)

    Article  Google Scholar 

  21. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order to the web. Technical report, Stanford InfoLab (1999)

    Google Scholar 

  22. Rezvani, M., Liang, W., Xu, W., Liu, C.: Identifying top-k structural hole spanners in large-scale social networks. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 263–272 (2015)

    Google Scholar 

  23. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93–93 (2008)

    Google Scholar 

  24. Shchur, O., Mumme, M., Bojchevski, A., Günnemann, S.: Pitfalls of graph neural network evaluation. arXiv preprint arXiv:1811.05868 (2018)

  25. Song, C., Hsu, W., Lee, M.L.: Mining brokers in dynamic social networks. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 523–532 (2015)

    Google Scholar 

  26. Sun, M., Xing, J., Wang, H., Chen, B., Zhou, J.: MOCL: data-driven molecular fingerprint via knowledge-aware contrastive learning from molecular graph. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 3585–3594 (2021)

    Google Scholar 

  27. Thakoor, S., Tallec, C., Azar, M.G., Munos, R., Veličković, P., Valko, M.: Bootstrapped representation learning on graphs. In: ICLR 2021 Workshop on Geometrical and Topological Representation Learning (2021)

    Google Scholar 

  28. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  29. Velickovic, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D.: Deep graph infomax. ICLR (Poster) 2(3), 4 (2019)

    Google Scholar 

  30. Wang, C., Pan, S., Hu, R., Long, G., Jiang, J., Zhang, C.: Attributed graph clustering: a deep attentional embedding approach. arXiv preprint arXiv:1906.06532 (2019)

  31. Winterbach, W., Mieghem, P.V., Reinders, M., Wang, H., Ridder, D.d.: Topology of molecular interaction networks. BMC Syst. Biol. 7, 1–15 (2013)

    Google Scholar 

  32. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: International Conference on Machine Learning, pp. 478–487. PMLR (2016)

    Google Scholar 

  33. Xu, W., Li, T., Liang, W., Yu, J.X., Yang, N., Gao, S.: Identifying structural hole spanners to maximally block information propagation. Inf. Sci. 505, 100–126 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, T., Xiong, Y., Zhang, J., Zhang, Y., Jiao, Y., Zhu, Y.: CommdGI: community detection oriented deep graph infomax. In: Proceedings of the 29th ACM International Conference on Information and Knowledge Management, pp. 1843–1852 (2020)

    Google Scholar 

  35. Zhang, Y., et al.: Finding structural hole spanners based on community forest model and diminishing marginal utility in large scale social networks. Knowl.-Based Syst. 199, 105916 (2020)

    Article  Google Scholar 

  36. Zhu, X., Lafferty, J., Ghahramani, Z.: Combining active learning and semi-supervised learning using gaussian fields and harmonic functions. In: ICML 2003 Workshop on the Continuum from labeled to Unlabeled Data in Machine Learning and Data Mining, vol. 3 (2003)

    Google Scholar 

  37. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Deep graph contrastive representation learning. arXiv preprint arXiv:2006.04131 (2020)

  38. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, pp. 2069–2080 (2021)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Shenzhen Sustainable Development Project under Grant (KCXFZ20201221173013036) and NSFC program (No. 62272338).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minglai Shao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Wang, W., Li, T., Shao, M., Liu, J., Sun, Y. (2023). Joint Community and Structural Hole Spanner Detection via Graph Contrastive Learning. In: Jin, Z., Jiang, Y., Buchmann, R.A., Bi, Y., Ghiran, AM., Ma, W. (eds) Knowledge Science, Engineering and Management. KSEM 2023. Lecture Notes in Computer Science(), vol 14120. Springer, Cham. https://doi.org/10.1007/978-3-031-40292-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40292-0_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40291-3

  • Online ISBN: 978-3-031-40292-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics