Examining the Impact of Network Architecture on Extracted Feature Quality for CBR | SpringerLink
Skip to main content

Examining the Impact of Network Architecture on Extracted Feature Quality for CBR

  • Conference paper
  • First Online:
Case-Based Reasoning Research and Development (ICCBR 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14141))

Included in the following conference series:

  • 571 Accesses

Abstract

Classification accuracy for case-based classifiers depends critically on the features used for case retrieval. Feature extraction from deep learning classifier models has proven a useful method for generating case-based classifier features, especially for domains in which manual feature engineering is costly or difficult. Previous work has explored how the quality of extracted features is influenced by structural choices such as the number of features extracted and the location/depth of extraction. This paper investigates how feature quality is influenced by another factor: the choice of the network model itself. We consider a selection of deep learning models for a computer vision classification task and test the accuracy of a case-based classifier using features extracted from them, both as the sole feature source and in combination with a supplementary set of knowledge-engineered features. Results suggest that feature quality reflects a trade-off between model complexity and training data requirements and provide lessons for the selection of deep learning architectures for feature extraction to support case-based classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Commun. 7(1), 39–52 (1994)

    Article  Google Scholar 

  2. Barletta, R., Mark, W.: Explanation-based indexing of cases. In: Kolodner, J. (ed.) Proceedings of a Workshop on Case-Based Reasoning, pp. 50–60. DARPA, Morgan Kaufmann, Palo Alto (1988)

    Google Scholar 

  3. Barnett, A.J., et al.: Interpretable mammographic image classification using case-based reasoning and deep learning. In: IJCAI Workshops 2021 (2021)

    Google Scholar 

  4. Bhatta, S., Goel, A.: Model-based learning of structural indices to design cases. In: Proceedings of the IJCAI-93 Workshop on Reuse of Design, pp. A1–A13. IJCAI, Chambery (1993)

    Google Scholar 

  5. Bonzano, A., Cunningham, P., Smyth, B.: Using introspective learning to improve retrieval in CBR: a case study in air traffic control. In: Leake, D.B., Plaza, E. (eds.) ICCBR 1997. LNCS, vol. 1266, pp. 291–302. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63233-6_500

    Chapter  Google Scholar 

  6. Chai, J., Zeng, H., Li, A., Ngai, E.W.: Deep learning in computer vision: a critical review of emerging techniques and application scenarios. Mach. Learn. Appl. 6, 100134 (2021)

    Google Scholar 

  7. Chen, C., Li, O., Tao, D., Barnett, A., Rudin, C., Su, J.K.: This looks like that: deep learning for interpretable image recognition. In: Advances in Neural Information Processing Systems, vol. 32, pp. 8930–8941. Curran (2019)

    Google Scholar 

  8. Cox, M., Ram, A.: Introspective multistrategy learning: on the construction of learning strategies. Artif. Intell. 112(1–2), 1–55 (1999)

    Article  MATH  Google Scholar 

  9. Domeshek, E.: Indexing stories as social advice. In: Proceedings of the Ninth National Conference on Artificial Intelligence, pp. 16–21. AAAI Press, Menlo Park (1991)

    Google Scholar 

  10. Fox, S., Leake, D.: Introspective reasoning for index refinement in case-based reasoning. J. Exp. Theor. Artif. Intell. 13(1), 63–88 (2001)

    Article  MATH  Google Scholar 

  11. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5), 1–42 (2018)

    Article  Google Scholar 

  12. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks (2016). arXiv:1608.06993

  13. Kenny, E.M., Keane, M.T.: Twin-systems to explain artificial neural networks using case-based reasoning: comparative tests of feature-weighting methods in ANN-CBR twins for XAI. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (2019)

    Google Scholar 

  14. Khan, A., Sohail, A., Zahoora, U., Qureshi, A.S.: A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 53, 5455–5516 (2019)

    Article  Google Scholar 

  15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, vol. 1, pp. 1097–1105 (2012)

    Google Scholar 

  16. Leake, D.: An indexing vocabulary for case-based explanation. In: Proceedings of the Ninth National Conference on Artificial Intelligence, pp. 10–15. AAAI Press, Menlo Park (1991)

    Google Scholar 

  17. Leake, D.: CBR in context: the present and future. In: Leake, D. (ed.) Case-Based Reasoning: Experiences, Lessons, and Future Directions, pp. 3–30. AAAI Press, Menlo Park (1996). http://www.cs.indiana.edu/~leake/papers/a-96-01.html

  18. Leake, D., Wilkerson, Z., Crandall, D.: Extracting case indices from convolutional neural networks: a comparative study. In: Keane, M.T., Wiratunga, N. (eds.) ICCBR 2022. LNCS, vol. 13405, pp. 81–95. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14923-8_6

    Chapter  Google Scholar 

  19. Leake, D., Ye, X.: Harmonizing case retrieval and adaptation with alternating optimization. In: Sánchez-Ruiz, A.A., Floyd, M.W. (eds.) ICCBR 2021. LNCS (LNAI), vol. 12877, pp. 125–139. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86957-1_9

    Chapter  Google Scholar 

  20. Li, O., Liu, H., Chen, C., Rudin, C.: Deep learning for case-based reasoning through prototypes: a neural network that explains its predictions. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  21. Liao, C., Liu, A., Chao, Y.: A machine learning approach to case adaptation. In: 2018 IEEE First International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), pp. 106–109 (2018)

    Google Scholar 

  22. Main, J., Dillon, T.S.: A hybrid case-based reasoner for footwear design. In: Althoff, K.-D., Bergmann, R., Branting, L.K. (eds.) ICCBR 1999. LNCS, vol. 1650, pp. 497–509. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48508-2_36

    Chapter  Google Scholar 

  23. Mathisen, B.M., Aamodt, A., Bach, K., Langseth, H.: Learning similarity measures from data. Progr. Artif. Intell. 9, 129–143 (2019)

    Article  Google Scholar 

  24. Richter, M.: Introduction. In: Lenz, M., Bartsch-Spörl, B., Burkhard, H.D., Wess, S. (eds.) CBR Technology: From Foundations to Applications, chap. 1, pp. 1–15. Springer, Berlin (1998)

    Google Scholar 

  25. Rudin, C.: Please stop explaining black box models for high stakes decisions. Nature Mach. Intell. 1, 206–215 (2019)

    Article  Google Scholar 

  26. Sani, S., Wiratunga, N., Massie, S.: Learning deep features for kNN-based human activity recognition. In: Proceedings of ICCBR 2017 Workshops (CAW, CBRDL, PO-CBR), Doctoral Consortium, and Competitions co-located with the 25th International Conference on Case-Based Reasoning (ICCBR 2017), Trondheim, Norway, 26–28 June 2017. CEUR Workshop Proceedings, vol. 2028, pp. 95–103. CEUR-WS.org (2017)

    Google Scholar 

  27. Schank, R., et al.: Towards a general content theory of indices. In: Proceedings of the 1990 AAAI Spring Symposium on Case-Based Reasoning. AAAI Press, Menlo Park (1990)

    Google Scholar 

  28. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). https://doi.org/10.48550/ARXIV.1409.1556, arXiv:1409.1556

  29. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision (2015). arXiv:1512.00567

  30. Turner, J.T., Floyd, M.W., Gupta, K.M., Aha, D.W.: Novel object discovery using case-based reasoning and convolutional neural networks. In: Cox, M.T., Funk, P., Begum, S. (eds.) ICCBR 2018. LNCS (LNAI), vol. 11156, pp. 399–414. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01081-2_27

    Chapter  Google Scholar 

  31. Turner, J.T., Floyd, M.W., Gupta, K., Oates, T.: NOD-CC: a hybrid CBR-CNN architecture for novel object discovery. In: Bach, K., Marling, C. (eds.) ICCBR 2019. LNCS (LNAI), vol. 11680, pp. 373–387. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29249-2_25

    Chapter  Google Scholar 

  32. Wilkerson, Z., Leake, D., Crandall, D.J.: On combining knowledge-engineered and network-extracted features for retrieval. In: Sánchez-Ruiz, A.A., Floyd, M.W. (eds.) ICCBR 2021. LNCS (LNAI), vol. 12877, pp. 248–262. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86957-1_17

    Chapter  Google Scholar 

  33. Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning - a comprehensive evaluation of the good, the bad and the ugly. IEEE Trans. Pattern Anal. Mach. Intell. (T-PAMI) 40(8), 1–14 (2018)

    Google Scholar 

  34. Ye, X., Leake, D., Crandall, D.: Case adaptation with neural networks: capabilities and limitations. In: Keane, M.T., Wiratunga, N. (eds.) ICCBR 2022. LNCS, vol. 13405, pp. 143–158. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14923-8_10

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was funded by the US Department of Defense (Contract W52P1J2093009), and by the Department of the Navy, Office of Naval Research (Award N00014-19-1-2655).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary Wilkerson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leake, D., Wilkerson, Z., Vats, V., Acharya, K., Crandall, D. (2023). Examining the Impact of Network Architecture on Extracted Feature Quality for CBR. In: Massie, S., Chakraborti, S. (eds) Case-Based Reasoning Research and Development. ICCBR 2023. Lecture Notes in Computer Science(), vol 14141. Springer, Cham. https://doi.org/10.1007/978-3-031-40177-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40177-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40176-3

  • Online ISBN: 978-3-031-40177-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics