Abstract
The lattice-based CRYSTALS-Dilithium signature scheme has been selected for standardization by the NIST. As part of the selection process, a large number of implementations for platforms like x86, ARM Cortex-M4, or – on the hardware side – Xilinx Artix-7 have been presented and discussed by experts. While software implementations have been subject to side-channel analysis with several attacks being published, an analysis of Dilithium hardware implementations and their peculiarities has not taken place. With this work, we aim to fill this gap, presenting an analysis of vulnerable operations and practically showing a successful profiled Simple Power Analysis (SPA) and a Correlation Power Analysis (CPA) on a recent hardware implementation by Beckwith et al. Our SPA attack requires 700 000 profiling traces and targets the first Number-Theoretic Transform (NTT) stage. After finishing profiling, we can identify pairs of coefficients with 1 101 traces. The full CPA attack finds secret coefficients with as low as 66 000 traces. In response, we present specific countermeasures and show that they effectively prevent both attacks.
L. Kogelheide—The respective work has been conducted as an employee of TÜV Informationstechnik GmbH.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Azouaoui, M., et al.: Protecting Dilithium against leakage: revisited sensitivity analysis and improved implementations. Cryptology ePrint Archive, Paper 2022/1406 (2022). https://eprint.iacr.org/2022/1406
Bache, F., Güneysu, T.: Boolean masking for arithmetic additions at arbitrary order in hardware. Appl. Sci. 12(5), 2274 (2022)
Barthe, G., et al.: Masking the GLP lattice-based signature scheme at any order. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 354–384. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_12
Beckwith, L., Nguyen, D.T., Gaj, K.: High-performance hardware implementation of CRYSTALS-Dilithium. In: International Conference on Field-Programmable Technology, (IC)FPT 2021, Auckland, New Zealand, 6–10 December 2021, pp. 1–10. IEEE (2021)
Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_2
Bronchain, O., Cassiers, G.: Bitslicing arithmetic/Boolean masking conversions for fun and profit with application to lattice-based KEMs. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(4), 553–588 (2022)
Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_26
Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_3
Chen, Z., Karabulut, E., Aysu, A., Ma, Y., Jing, J.: An efficient non-profiled side-channel attack on the CRYSTALS-Dilithium post-quantum signature. In: 39th IEEE International Conference on Computer Design, ICCD 2021, Storrs, CT, USA, 24–27 October 2021, pp. 583–590. IEEE (2021)
Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5_17
Ducas, L., et al.: CRYSTALS-Dilithium - algorithm specifications and supporting documentation (version 3.1). Technical report (2021). https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
Fritzmann, T., et al.: Masked accelerators and instruction set extensions for post-quantum cryptography. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(1), 414–460 (2022)
Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer, Heidelberg (2006). https://doi.org/10.1007/11894063_2
Goubin, L., Patarin, J.: DES and differential power analysis the “duplication’’ method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5_15
Güneysu, T., Moradi, A.: Generic side-channel countermeasures for reconfigurable devices. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 33–48. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9_3
Karabulut, E., Alkim, E., Aysu, A.: Single-trace side-channel attacks on \(\omega \)-small polynomial sampling: with applications to NTRU, NTRU Prime, and CRYSTALS-DILITHIUM. In: IEEE International Symposium on Hardware Oriented Security and Trust, HOST 2021, Tysons Corner, VA, USA, 12–15 December 2021, pp. 35–45. IEEE (2021)
Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9
Land, G., Sasdrich, P., Güneysu, T.: A hard crystal - implementing Dilithium on reconfigurable hardware. In: Grosso, V., Pöppelmann, T. (eds.) CARDIS 2021. LNCS, vol. 13173, pp. 210–230. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-97348-3_12
Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets of Smart Cards. Springer, New York (2007). https://doi.org/10.1007/978-0-387-38162-6
Marzougui, S., Ulitzsch, V., Tibouchi, M., Seifert, J.-P.: Profiling side-channel attacks on Dilithium: a small bit-fiddling leak breaks it all. Cryptology ePrint Archive, Report 2022/106 (2022). https://eprint.iacr.org/2022/106
Migliore, V., Gérard, B., Tibouchi, M., Fouque, P.-A.: Masking Dilithium. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 344–362. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21568-2_17
Ravi, P., Jhanwar, M.P., Howe, J., Chattopadhyay, A., Bhasin, S.: Side-channel assisted existential forgery attack on Dilithium - a NIST PQC candidate. Cryptology ePrint Archive, Report 2018/821 (2018). https://eprint.iacr.org/2018/821
Ravi, P., Jhanwar, M.P., Howe, J., Chattopadhyay, A., Bhasin, S.: Exploiting determinism in lattice-based signatures: practical fault attacks on pqm4 implementations of NIST candidates. In: Galbraith, S.D., Russello, G., Susilo, W., Gollmann, D., Kirda, E., Liang, Z. (eds.) ASIACCS 2019: 14th ACM Symposium on Information, Computer and Communications Security, Auckland, New Zealand, 9–12 July 2019, pp. 427–440. ACM Press (2019)
Schneider, T., Moradi, A., Güneysu, T.: Arithmetic addition over Boolean masking. In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 559–578. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28166-7_27
Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994, pp. 124–134. IEEE Computer Society Press (1994)
Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., Standaert, F.-X.: Shuffling against side-channel attacks: a comprehensive study with cautionary note. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 740–757. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_44
Zhao, C., et al.: A compact and high-performance hardware architecture for CRYSTALS-Dilithium. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(1), 270–295 (2022)
Acknowledgments
We thank the reviewers for their constructive comments. Furthermore, we thank Pascal Sasdrich for the fruitful discussions. This work was supported by the German Research Foundation under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972, through the H2020 project PROMETHEUS (grant agreement ID 780701), CONVOLVE (grant agreement ID 101070374), and by the Federal Ministry of Education and Research of Germany through the QuantumRISC (16KIS1038), PQC4Med (16KIS1044), and 6GEM (16KISK038) projects.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Steffen, H., Land, G., Kogelheide, L., Güneysu, T. (2023). Breaking and Protecting the Crystal: Side-Channel Analysis of Dilithium in Hardware. In: Johansson, T., Smith-Tone, D. (eds) Post-Quantum Cryptography. PQCrypto 2023. Lecture Notes in Computer Science, vol 14154. Springer, Cham. https://doi.org/10.1007/978-3-031-40003-2_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-40003-2_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-40002-5
Online ISBN: 978-3-031-40003-2
eBook Packages: Computer ScienceComputer Science (R0)