Abstract
The Dihedral Coset Problem (\(\textsf{DCP}\)) in \(\mathbb {Z}_N\) has been extensively studied in quantum computing and post-quantum cryptography, as for instance, the Learning with Errors problem reduces to it. While the Ettinger-Høyer algorithm is known to solve the \(\textsf{DCP}\) in \(O\left( \log {N} \right) \) queries, it runs inefficiently in time \(O\left( N \right) \). The first time-efficient algorithm was introduced (and later improved) by Kuperberg (SIAM J. Comput. 2005). These algorithms run in a subexponential amount of time and queries \(\tilde{O}\left( 2^{\sqrt{c_{\textsf{DCP}}\log {N}}} \right) \), for some constant \(c_{\textsf{DCP}}\).
The sieving algorithms Kuperberg admit many trade-offs between quantum and classical time, memory and queries. Some of these trade-offs allow the attacker to reduce the number of queries if they are particularly costly, which is notably the case in the post-quantum key-exchange CSIDH. Such optimizations have already been studied, but they typically fall into two categories: the resulting algorithm is either based on Regev’s approach of reducing the \(\textsf{DCP}\) with quadratic queries to a subset-sum instance, or on a re-optimization of Kuperberg’s sieve where the time and queries are both subexponential.
In this paper, we introduce the first algorithm to improve in the linear queries regime over the Ettinger-Høyer algorithm. We then show that we can in fact interpolate between this algorithm and Kuperberg’s sieve, by using the latter in a pre-processing step to create several quantum states, and solving a quantum subset-sum instance to recover the full secret in one pass from the obtained states. This allows to interpolate smoothly between the linear queries-exponential time complexity case and the subexponential query and time complexity case, thus allowing a fine tuning of the complexity taking into account the query cost. We also give on our way a precise study of quantum subset-sum algorithms in the non-asymptotic regime.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case equivalence. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing, El Paso, Texas, USA, 4–6 May 1997, pp. 284–293 (1997). http://doi.acm.org/10.1145/258533.258604
Alagic, G., et al.: Status report on the third round of the nist post-quantum cryptography standardization process (2022–07-05 04:07:00 2022). https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=934458
Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group actions and applications. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 411–439. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_14
Becker, A., Coron, J.-S., Joux, A.: Improved generic algorithms for hard knapsacks. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 364–385. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_21
Bernstein, D.J., Jeffery, S., Lange, T., Meurer, A.: Quantum algorithms for the subset-sum problem. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 16–33. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38616-9_2
Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based signatures through class group computations. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 227–247. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_9
Bonnetain, X.: Improved low-qubit hidden shift algorithms (2019). arXiv:1901.11428
Bonnetain, X., Bricout, R., Schrottenloher, A., Shen, Y.: Improved classical and quantum algorithms for subset-sum. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 633–666. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_22
Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 493–522. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_17
Brassard, G., HØyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free functions. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 163–169. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054319
Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_15
Chávez-Saab, J., Chi-Domínguez, J., Jaques, S., Rodríguez-Henríquez, F.: The SQALE of CSIDH: sublinear vélu quantum-resistant isogeny action with low exponents. J. Cryptogr. Eng. 12(3), 349–368 (2022)
Childs, A., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quantum subexponential time. J. Math. Cryptol. 8(1), 1–29 (2014)
De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 759–789. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_26
Decru, T., Panny, L., Vercauteren, F.: Faster SeaSign signatures through improved rejection sampling. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 271–285. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7_15
Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)
Esser, A., Ramos-Calderer, S., Bellini, E., Latorre, J.I., Manzano, M.: An optimized quantum implementation of ISD on scalable quantum resources. IACR Cryptology ePrint Archive, p. 1608 (2021)
Ettinger, M., Høyer, P.: On quantum algorithms for noncommutative hidden subgroups. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 478–487. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49116-3_45
Ettinger, M., Høyer, P., Knill, E.: The quantum query complexity of the hidden subgroup problem is polynomial (2004). arXiv:quant-ph/0401083
Helm, A., May, A.: Subset sum quantumly in \(1.17^n\). In: Jeffery, S. (ed.) TQC 2018. Leibniz International Proceedings in Informatics (LIPIcs), vol. 111, pp. 5:1–5:15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2018)
Helm, A., May, A.: The power of few qubits and collisions – subset sum below Grover’s bound. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp. 445–460. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1_24
Howgrave-Graham, N., Joux, A.: New generic algorithms for hard knapsacks. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 235–256. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_12
Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden subgroup problem. SIAM J. Comput. 35(1), 170–188 (2005). https://doi.org/10.1137/S0097539703436345
Kuperberg, G.: Another subexponential-time quantum algorithm for the dihedral hidden subgroup problem. In: TQC. LIPIcs, vol. 22, pp. 20–34. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2013)
Lyubashevsky, V., Micciancio, D.: On bounded distance decoding, unique shortest vectors, and the minimum distance problem. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 577–594. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_34
NIST: Submission requirements and evaluation criteria for the post-quantum cryptography standardization process (2016). https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
Peikert, C.: He gives C-sieves on the CSIDH. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 463–492. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_16
Regev, O.: Quantum computation and lattice problems. In: FOCS, pp. 520–529. IEEE Computer Society (2002)
Regev, O.: New lattice-based cryptographic constructions. J. ACM 51(6), 899–942 (2004)
Regev, O.: A subexponential time algorithm for the dihedral hidden subgroup problem with polynomial space (2004). arXiv:quant-ph/0406151
Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)
Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994)
Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_36
Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_19
Acknowledgments
This work has been partially supported by the French Agence Nationale de la Recherche through the France 2030 program under grant agreement No. ANR-22-PETQ-0008 PQ-TLS.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Remaud, M., Schrottenloher, A., Tillich, JP. (2023). Time and Query Complexity Tradeoffs for the Dihedral Coset Problem. In: Johansson, T., Smith-Tone, D. (eds) Post-Quantum Cryptography. PQCrypto 2023. Lecture Notes in Computer Science, vol 14154. Springer, Cham. https://doi.org/10.1007/978-3-031-40003-2_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-40003-2_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-40002-5
Online ISBN: 978-3-031-40003-2
eBook Packages: Computer ScienceComputer Science (R0)