Abstract
In this paper, we propose a basis for discussing the role of fuzzy sets theory in the context of explainable artificial intelligence. We advocate that combining several frameworks in artificial intelligence, including fuzzy sets theory, adopting a hybrid point of view both for knowledge and data representation and for reasoning, offers opportunities towards explainability. This idea is instantiated on the example of image understanding, expressed as a spatial reasoning problem.
I. Bloch—This work was partly supported by the author’s chair in Artificial Intelligence (Sorbonne Université and SCAI). A part of the work was performed while the author was with LTCI, Télécom Paris, Institut Polytechnique de Paris.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
These are only examples and similar approaches have been developed in other application domains, such as satellite imaging, video, music representations, etc.
References
Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.): Handbook of Spatial Logic. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5587-4
Aiguier, M., Atif, J., Bloch, I., Pino Pérez, R.: Explanatory relations in arbitrary logics based on satisfaction systems, cutting and retraction. Int. J. Approximate Reasoning 102, 1–20 (2018)
Aiguier, M., Bloch, I.: Logical dual concepts based on mathematical morphology in stratified institutions. J. Appl. Non-Classical Log. 29(4), 392–429 (2019)
Aldea, E., Bloch, I.: Toward a better integration of spatial relations in learning with graphical models. In: Guillet, F., Ritschard, G., Zighed, D.A., Briand, H. (eds.) Advances in Knowledge Discovery and Management. SCI, vol. 292, pp. 77–94. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-00580-0_5
Atif, J., Hudelot, C., Bloch, I.: Explanatory reasoning for image understanding using formal concept analysis and description logics. IEEE Trans. Syst. Man Cybern. Syst. 44(5), 552–570 (2014)
Atif, J., Hudelot, C., Fouquier, G., Bloch, I., Angelini, E.: From generic knowledge to specific reasoning for medical image interpretation using graph-based representations. In: International Joint Conference on Artificial Intelligence, IJCAI 2007, Hyderabad, India, pp. 224–229 (2007)
Bloch, I.: Information combination operators for data fusion: a comparative review with classification. IEEE Trans. Syst. Man Cybern. 26(1), 52–67 (1996)
Bloch, I.: On fuzzy spatial distances. In: Hawkes, P. (ed.) Advances in Imaging and Electron Physics, vol. 128, pp. 51–122. Elsevier, Amsterdam (2003)
Bloch, I.: Spatial reasoning under imprecision using fuzzy set theory, formal logics and mathematical morphology. Int. J. Approximate Reasoning 41(2), 77–95 (2006)
Bloch, I.: Fuzzy sets for image processing and understanding. Fuzzy Sets Syst. 281, 280–291 (2015)
Bloch, I.: Mathematical morphology and spatial reasoning: fuzzy and bipolar setting. TWMS J. Pure Appl. Math. 12(1), 104–125 (2021). Special Issue on Fuzzy Sets in Dealing with Imprecision and Uncertainty: Past and Future Dedicated to the Memory of Lotfi A. Zadeh
Bloch, I.: Modeling imprecise and bipolar algebraic and topological relations using morphological dilations. Math. Morphol. Theory Appl. 5(1), 1–20 (2021)
Bloch, I.: Hybrid artificial intelligence for knowledge representation and model-based medical image understanding - towards explainability. In: Baudrier, É., Naegel, B., Krähenbühl, A., Tajine, M. (eds.) DGMM 2022. LNCS, vol. 13493, pp. 17–25. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19897-7_2
Bloch, I., Atif, J.: Defining and computing Hausdorff distances between distributions on the real line and on the circle: link between optimal transport and morphological dilations. Math. Morphol. Theory Appl. 1(1), 79–99 (2016)
Bloch, I., Géraud, T., Maître, H.: Representation and fusion of heterogeneous fuzzy information in the 3D space for model-based structural recognition - application to 3D brain imaging. Artif. Intell. 148, 141–175 (2003)
Bloch, I., Lang, J., Pérez, R.P., Uzcátegui, C.: Morphologic for knowledge dynamics: revision, fusion, abduction. Technical report. arXiv:1802.05142, arXiv cs.AI (2018)
Bloch, I., Ralescu, A.: Fuzzy Sets Methods in Image Processing and Understanding: Medical Imaging Applications. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-19425-2
Bloch, I., Lesot, M.J.: Towards a formulation of fuzzy contrastive explanations. In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8 (2022)
Bouchon-Meunier, B., Lesot, M.J., Marsala, C.: Lotfi A. Zadeh, the visionary in explainable artificial intelligence. TWMS J. Pure Appl. Math. 12(1), 5–13 (2021)
Cesar, R., Bengoetxea, E., Bloch, I., Larranaga, P.: Inexact graph matching for model-based recognition: evaluation and comparison of optimization algorithms. Pattern Recogn. 38, 2099–2113 (2005)
Chopin, J., Fasquel, J.B., Mouchère, H., Dahyot, R., Bloch, I.: Improving semantic segmentation with graph-based structural knowledge. In: El Yacoubi, M., Granger, E., Yuen, P.C., Pal, U., Vincent, N. (eds.) ICPRAI 2022. LNCS, vol. 13363, pp. 173–184. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09037-0_15
Colliot, O., Camara, O., Bloch, I.: Integration of fuzzy spatial relations in deformable models - application to brain MRI segmentation. Pattern Recogn. 39, 1401–1414 (2006)
Coradeschi, S., Saffiotti, A.: Anchoring symbols to vision data by fuzzy logic. In: Hunter, A., Parsons, S. (eds.) ECSQARU 1999. LNCS (LNAI), vol. 1638, pp. 104–115. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48747-6_10
Coste-Marquis, S., Marquis, P.: From explanations to intelligible explanations. In: 1st International Workshop on Explainable Logic-Based Knowledge Representation (XLoKR 2020) (2020)
Couteaux, V., et al.: Automatic knee meniscus tear detection and orientation classification with Mask-RCNN. Diagn. Interv. Imaging 100, 235–242 (2019)
De Raedt, L., Dumancic, S., Manhaeve, R., Marra, G.: From statistical relational to neuro-symbolic artificial intelligence. In: Bessiere, C. (ed.) Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-2020, pp. 4943–4950 (2020)
Delmonte, A., Mercier, C., Pallud, J., Bloch, I., Gori, P.: White matter multi-resolution segmentation using fuzzy set theory. In: IEEE International Symposium on Biomedical Imaging (ISBI), Venice, Italy, pp. 459–462 (2019)
Denis, C., Varenne, F.: Interprétabilité et explicabilité de phénomènes prédits par de l’apprentissage machine. Revue Ouverte d’Intelligence Artificielle 3, 287–310 (2022)
Deruyver, A., Hodé, Y.: Constraint satisfaction problem with bilevel constraint: application to interpretation of over-segmented images. Artif. Intell. 93(1–2), 321–335 (1997)
Dubois, D., Prade, H.: A review of fuzzy set aggregation connectives. Inf. Sci. 36, 85–121 (1985)
Fasquel, J., Delanoue, N.: A graph based image interpretation method using a priori qualitative inclusion and photometric relationships. IEEE Trans. Pattern Anal. Mach. Intell. 41(5), 1043–1055 (2019)
Fouquier, G., Atif, J., Bloch, I.: Sequential model-based segmentation and recognition of image structures driven by visual features and spatial relations. Comput. Vis. Image Underst. 116(1), 146–165 (2012)
Freeman, J.: The modelling of spatial relations. Comput. Graph. Image Process. 4(2), 156–171 (1975)
d’Avila Garcez, A., Lamb, L.C.: Neurosymbolic AI: the 3rd wave. CoRR abs/2012.05876 (2020)
Garnelo, M., Shanahan, M.: Reconciling deep learning with symbolic artificial intelligence: representing objects and relations. Curr. Opin. Behav. Sci. 29, 17–23 (2019)
Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach. Part I: causes. Br. J. Philos. Sci. 56(4), 843–887 (2005)
Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach. Part II: explanations. Br. J. Philos. Sci. 56(4), 889–911 (2005)
Harnad, S.: The symbol grounding problem. Physica 42, 335–346 (1990)
Hudelot, C., Atif, J., Bloch, I.: Fuzzy spatial relation ontology for image interpretation. Fuzzy Sets Syst. 159, 1929–1951 (2008)
Kahneman, D.: Thinking, Fast and Slow. Penguin, New York (2012)
Kautz, H.: The third AI summer: AAAI Robert S. Engelmore memorial lecture. AI Mag. 43(1), 93–104 (2022)
Landini, G., Galton, A., Randell, D., Fouad, S.: Novel applications of discrete mereotopology to mathematical morphology. Sig. Process. Image Commun. 76, 109–117 (2019)
Marcus, G.: The next decade in AI: four steps towards robust artificial intelligence. CoRR abs/2002.06177 (2020)
Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019)
Miller, T.: Contrastive explanation: a structural-model approach. Knowl. Eng. Rev. 36, E14 (2021)
Munro, Y., Bloch, I., Chetouani, M., Lesot, M.J., Pelachaud, C.: Argumentation and causal models in human-machine interaction: a round trip. In: 8th International Workshop on Artificial Intelligence and Cognition, Örebro, Sweden (2022)
Nempont, O., Atif, J., Bloch, I.: A constraint propagation approach to structural model based image segmentation and recognition. Inf. Sci. 246, 1–27 (2013)
Perchant, A., Bloch, I.: Fuzzy morphisms between graphs. Fuzzy Sets Syst. 128(2), 149–168 (2002)
Pierrard, R., Poli, J.P., Hudelot, C.: Spatial relation learning for explainable image classification and annotation in critical applications. Artif. Intell. 292, 103434 (2021)
Randell, D., Cui, Z., Cohn, A.: A spatial logic based on regions and connection. In: Nebel, B., Rich, C., Swartout, W. (eds.) Principles of Knowledge Representation and Reasoning, KR1992, pp. 165–176. Kaufmann, San Mateo (1992)
Riva, M., Gori, P., Yger, F., Bloch, I.: Is the U-Net directional-relationship aware? In: International Conference on Image Processing, Bordeaux, France, pp. 3391–3395 (2022)
Schockaert, S., De Cock, M., Cornelis, C., Kerre, E.E.: Fuzzy region connection calculus: representing vague topological information. Int. J. Approximate Reasoning 48(1), 314–331 (2008)
Schockaert, S., De Cock, M., Kerre, E.E.: Spatial reasoning in a fuzzy region connection calculus. Artif. Intell. 173(2), 258–298 (2009)
Smeulders, A., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1349–1380 (2000)
Virzì, A., et al.: Segmentation of pelvic vessels in pediatric MRI using a patch-based deep learning approach. In: Melbourne, A., et al. (eds.) PIPPI/DATRA -2018. LNCS, vol. 11076, pp. 97–106. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00807-9_10
Xie, X., Niu, J., Liu, X., Chen, Z., Tang, S., Yu, S.: A survey on incorporating domain knowledge into deep learning for medical image analysis. Med. Image Anal. 69, 101985 (2021)
Yager, R.R.: Connectives and quantifiers in fuzzy sets. Fuzzy Sets Syst. 40, 39–75 (1991)
Yang, Y., Atif, J., Bloch, I.: Abductive reasoning using tableau methods for high-level image interpretation. In: Hölldobler, S., Krötzsch, M., Peñaloza, R., Rudolph, S. (eds.) KI 2015. LNCS (LNAI), vol. 9324, pp. 356–365. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24489-1_34
Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Inf. Sci. 8, 199–249 (1975)
Acknowledgements
The author would like to thank all her co-authors, and to emphasize that the ideas summarized in this paper benefitted from many joint works with PhD candidates, post-doctoral researchers, colleagues in universities and research centers in several countries, with university hospitals, and with industrial partners.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bloch, I. (2023). Fuzzy Sets: A Key Towards Hybrid Explainable Artificial Intelligence for Image Understanding. In: Massanet, S., Montes, S., Ruiz-Aguilera, D., González-Hidalgo, M. (eds) Fuzzy Logic and Technology, and Aggregation Operators. EUSFLAT AGOP 2023 2023. Lecture Notes in Computer Science, vol 14069. Springer, Cham. https://doi.org/10.1007/978-3-031-39965-7_39
Download citation
DOI: https://doi.org/10.1007/978-3-031-39965-7_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-39964-0
Online ISBN: 978-3-031-39965-7
eBook Packages: Computer ScienceComputer Science (R0)