Social Links Enhanced Microblog Sentiment Analysis: Integrating Link Prediction and Sentiment Connection Weights | SpringerLink
Skip to main content

Social Links Enhanced Microblog Sentiment Analysis: Integrating Link Prediction and Sentiment Connection Weights

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14146))

Included in the following conference series:

  • 829 Accesses

Abstract

The emerging microblogging service provides a new channel for people to share opinions and sentiment. As a result, microblog sentiment analysis has become a cutting-edge and popular research field, which has many important applications. Existing methods mostly extract sophisticated features from microblog texts without considering that microblogs are networked data, which suffer from poor performance. To address this issue, we propose a new model that assumes microblogs are interconnected and that connected microblogs are more likely to share the same sentiment. We leverage two types of information to model the connections between microblogs: user information and friend information. Our assumption is supported by two sociological theories: sentiment consistency and emotional contagion. The connections between microblogs based on user and friend information are often sparse and noisy, which can limit the effectiveness of sentiment analysis. To mitigate this issue, we use link prediction to identify potential connections between microblogs and introduce a sentiment connection weights matrix to quantify the degree of sentiment difference between connected microblogs. We then integrate potential social links and sentiment connection weights into our content-based sentiment model using a Laplacian regularization term. To demonstrate the effectiveness, sufficient experiments are conducted on two real datasets to show that exploring potential links and introducing sentiment connection weights can improve the performance of microblog sentiment analysis significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yang, D., Zhang, D., Yu, Z., Wang, Z.: A sentiment-enhanced personalized location recommendation system. In: Proceedings of the 24th ACM Conference on Hypertext and Social Media, HT 2013, Paris, France, pp. 119–128 (2013)

    Google Scholar 

  2. Bollen, J., Mao, H., Zeng, X.: Twitter mood predicts the stock market. J. Comput. Sci. 2(1), 1–8 (2011)

    Article  Google Scholar 

  3. Cambria, E., Schuller, B., Xia, Y., White, B.: New avenues in knowledge bases for natural language processing. Knowl.-Based Syst. 108, 1–4 (2016)

    Article  Google Scholar 

  4. Wu, Y., Liu, S., Yan, K., Liu, M., Wu, F.: OpinionFlow: visual analysis of opinion diffusion on social media. IEEE Trans. Vis. Comput. Graph. 20(12), 1763–1772 (2014)

    Article  Google Scholar 

  5. Cambria, E., Liu, Q., Decherchi, S., Xing, F., Kwok, K.: SenticNet 7: a commonsense-based neurosymbolic AI framework for explainable sentiment analysis. In: Proceedings of the Thirteenth Language Resources and Evaluation Conference, pp. 3829–3839 (2022)

    Google Scholar 

  6. Baccianella, S., Esuli, A., Sebastiani, F.: SentiWordNet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC 2010), vol. 10, pp. 2200–2204 (2010)

    Google Scholar 

  7. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Ann. Rev. Sociol. 27(1), 415–444 (2001)

    Article  Google Scholar 

  8. Marsden, P.V., Friedkin, N.E.: Network studies of social influence. Sociol. Methods Res. 22(1), 127–151 (1993)

    Article  Google Scholar 

  9. Hatfield, E., Cacioppo, J.T., Rapson, R.L.: Emotional contagion. Curr. Dir. Psychol. Sci. 2(3), 96–100 (1993)

    Article  Google Scholar 

  10. Abelson, R.P.: Whatever became of consistency theory? Pers. Soc. Psychol. Bull. 9(1), 37–64 (1983)

    Article  Google Scholar 

  11. Speriosu, M., Sudan, N., Upadhyay, S., Baldridge, J.: Twitter polarity classification with label propagation over lexical links and the follower graph. In: Proceedings of the First Workshop on Unsupervised Learning in NLP, EMNLP 2011, pp. 53–63 (2011)

    Google Scholar 

  12. Song, C., Wang, B., Jiang, Q., Zhang, Y., He, R., Hou, Y.: Social recommendation with implicit social influence. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1788–1792 (2021)

    Google Scholar 

  13. Khalifi, H., Dahir, S., El Qadi, A., Ghanou, Y.: Enhancing information retrieval performance by using social analysis. Soc. Netw. Anal. Min. 10, 1–7 (2020)

    Article  Google Scholar 

  14. Mehta, N., Pacheco, M.L., Goldwasser, D.: Tackling fake news detection by continually improving social context representations using graph neural networks. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1363–1380 (2022)

    Google Scholar 

  15. Hu, X., Tang, L., Tang, J., Liu, H.: Exploiting social relations for sentiment analysis in microblogging. In: Proceedings of the 6th ACM International Conference on Web Search and Data Mining, pp. 537–546 (2013)

    Google Scholar 

  16. Wu, F., Huang, Y., Song, Y.: Structured microblog sentiment classification via social context regularization. Neurocomputing 175(PartA), 599–609 (2016)

    Google Scholar 

  17. Cui, A., Zhang, M., Liu, Y., Ma, S.: Emotion tokens: bridging the gap among multilingual Twitter sentiment analysis. In: Salem, M.V.M., Shaalan, K., Oroumchian, F., Shakery, A., Khelalfa, H. (eds.) AIRS 2011. LNCS, vol. 7097, pp. 238–249. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25631-8_22

    Chapter  Google Scholar 

  18. Wu, F., Huang, Y., Song, Y., Liu, S.: Towards building a high-quality microblog-specific Chinese sentiment lexicon. Decis. Support Syst. 87, 39–49 (2016)

    Article  Google Scholar 

  19. Xing, F.Z., Pallucchini, F., Cambria, E.: Cognitive-inspired domain adaptation of sentiment lexicons. Inf. Process. Manag. 56(3), 554–564 (2019)

    Article  Google Scholar 

  20. Feng, S., Wang, Y., Liu, L., Wang, D., Yu, G.: Attention based hierarchical LSTM network for context-aware microblog sentiment classification. World Wide Web 22(1), 59–81 (2019)

    Article  Google Scholar 

  21. Ma, Y., Peng, H., Khan, T., Cambria, E., Hussain, A.: Sentic LSTM: a hybrid network for targeted aspect-based sentiment analysis. Cogn. Comput. 10(4), 639–650 (2018)

    Article  Google Scholar 

  22. Shin, B., Lee, T., Choi, J.D.: Lexicon integrated CNN models with attention for sentiment analysis, arXiv preprint arXiv:1610.06272 (2016)

  23. Wang, L., Niu, J., Yu, S.: SentiDiff: combining textual information and sentiment diffusion patterns for Twitter sentiment analysis. IEEE Trans. Knowl. Data Eng. 32(10), 2026–2039 (2019)

    Article  Google Scholar 

  24. Wu, F., Huang, Y.: Personalized microblog sentiment classification via multi-task learning. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 3059–3065 (2016)

    Google Scholar 

  25. Fersini, E., Pozzi, F., Messina, E.: Approval network: a novel approach for sentiment analysis in social networks. World Wide Web 20(4), 831–854 (2017)

    Article  Google Scholar 

  26. Cheng, K., Li, J., Tang, J., Liu, H.: Unsupervised sentiment analysis with signed social networks. In: 31st AAAI Conference on Artificial Intelligence, pp. 3429–3435 (2017)

    Google Scholar 

  27. Skianis, K., Rousseau, F., Vazirgiannis, M.: Regularizing text categorization with clusters of words. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 1827–1837 (2016)

    Google Scholar 

  28. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning. J. R. Stat. Soc. 167(1), 192 (2001)

    MATH  Google Scholar 

  29. Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25(3), 211–230 (2003)

    Article  Google Scholar 

  30. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhou, T., Lü, L., Zhang, Y.-C.: Predicting missing links via local information. Eur. Phys. J. B 71(4), 623–630 (2009)

    Article  MATH  Google Scholar 

  32. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging. Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media? In: Proceedings of the 19th International Conference on World Wide Web, pp. 591–600 (2010)

    Google Scholar 

  34. Keramatfar, A., Amirkhani, H., Bidgoly, A.J.: Modeling tweet dependencies with graph convolutional networks for sentiment analysis. Cogn. Comput. 14, 2234–2245 (2022)

    Article  Google Scholar 

  35. Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant supervision. Cs224n Project Report (2009)

    Google Scholar 

  36. Hutto, C., Gilbert, E.: VADER: a parsimonious rule-based model for sentiment analysis of social media text. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 8, pp. 216–225 (2014)

    Google Scholar 

  37. Kim, Y.: Convolutional neural networks for sentence classification. In: 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, Doha, Qatar, pp. 1746–1751 (2014)

    Google Scholar 

  38. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  39. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations, pp. 1–14 (2017)

    Google Scholar 

Download references

Acknowledgement

This paper is supported by 1) Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ23F020039, 2) National Science and Technology Major Project of China under Grant No. 2021ZD0114303, 3) National Natural Science Foundation of China under Grant No. 62176087.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taihao Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zou, X., Li, T., Yang, J. (2023). Social Links Enhanced Microblog Sentiment Analysis: Integrating Link Prediction and Sentiment Connection Weights. In: Strauss, C., Amagasa, T., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2023. Lecture Notes in Computer Science, vol 14146. Springer, Cham. https://doi.org/10.1007/978-3-031-39847-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39847-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39846-9

  • Online ISBN: 978-3-031-39847-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics