A Simple Dynamic Controller for Emulating Human Balance Control | SpringerLink
Skip to main content

A Simple Dynamic Controller for Emulating Human Balance Control

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14158))

Included in the following conference series:

  • 562 Accesses

Abstract

This paper presents a biologically inspired control system developed for maintaining balance in a simulated human atop an oscillating platform. This work advances our previous research by adapting a human balance controller to an inverted pendulum and controlled by linear-Hill muscle models. To expedite neuron/synapse parameter value selection, we employ a novel two-stage process that pairs a previously developed analytic method with particle swarm optimization. Using the parameter values found analytically as inputs for particle swarm optimization (PSO), we take advantage of the benefits of each method while avoiding their pitfalls. Our results show that PSO optimization allowed improved balance control from modest (<10%) changes to the synaptic parameters. The improved performance was accompanied by muscle coactivations, however, and further refinement is needed to better align overall behavior of the neural controller with biological systems.

This work was supported by NSF DBI 2015317 as part of the NSF/CIHR/DFG/FRQ/UKRI-MRC next Generation Networks for Neuroscience Program

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 16015
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 20019
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Table 29, https://www.cdc.gov/nchs/data/series/sr_03/sr03-046-508.pdf.

References

  1. Franco, J.A.G., Padilla, J.L. del V., Cisneros, S.O.: Event-based image processing using a neuromorphic vision sensor. In: 2013 IEEE International Autumn Meeting on Power Electronics and Computing (ROPEC), pp. 1–6 (2013). https://doi.org/10.1109/ROPEC.2013.6702715

  2. Chu, M., et al.: Neuromorphic hardware system for visual pattern recognition with memristor array and CMOS NEURON. IEEE Trans. Ind. Electron. 62, 2410–2419 (2015). https://doi.org/10.1109/TIE.2014.2356439

    Article  Google Scholar 

  3. Corradi, F., You, H., Giulioni, M., Indiveri, G.: Decision making and perceptual bistability in spike-based neuromorphic VLSI systems. In: 2015 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2708–2711 (2015). https://doi.org/10.1109/ISCAS.2015.7169245

  4. Chen, W., Ren, G., Wang, J., Liu, D.: An adaptive locomotion controller for a hexapod robot: CPG, kinematics and force feedback. Sci. Chin. Inf. Sci. 57(11), 1–18 (2014). https://doi.org/10.1007/s11432-014-5148-y

    Article  Google Scholar 

  5. Deng, K., et al.: Neuromechanical model of rat hind limb walking with two layer CPGs and muscle synergies. In: Vouloutsi, V., et al. (eds.) Living Machines 2018. LNCS (LNAI), vol. 10928, pp. 134–144. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95972-6_15

    Chapter  Google Scholar 

  6. Endo, G., Morimoto, J., Matsubara, T., Nakanishi, J., Cheng, G.: Learning CPG-based biped locomotion with a policy gradient method: application to a humanoid robot. Int. J. Robot. Res. 27, 213–228 (2008). https://doi.org/10.1177/0278364907084980

    Article  Google Scholar 

  7. Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: A Functional subnetwork approach to designing synthetic nervous systems that control legged robot locomotion. Front. Neurorobotics. 11, (2017). https://doi.org/10.3389/fnbot.2017.00037

  8. Hilts, W.W., Szczecinski, N.S., Quinn, R.D., Hunt, A.J.: Emulating balance control observed in human test subjects with a neural network. In: Vouloutsi, V., et al. (eds.) Living Machines 2018. LNCS (LNAI), vol. 10928, pp. 200–212. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95972-6_21

    Chapter  Google Scholar 

  9. Hilts, W.W., Szczecinski, N.S., Quinn, R.D., Hunt, A.J.: Simulation of human balance control using an inverted pendulum model. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P.F.M.J., Prescott, T., Lepora, N. (eds.) Living Machines 2017. LNCS (LNAI), vol. 10384, pp. 170–180. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63537-8_15

    Chapter  Google Scholar 

  10. Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. 81, 3088–3092 (1984). https://doi.org/10.1073/pnas.81.10.3088

    Article  MATH  Google Scholar 

  11. Beer, R.D., Gallagher, J.C.: Evolving dynamical neural networks for adaptive behavior. Adapt. Behav. 1, 91–122 (1992). https://doi.org/10.1177/105971239200100105

    Article  Google Scholar 

  12. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972). https://doi.org/10.1016/S0006-3495(72)86068-5

    Article  Google Scholar 

  13. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the ICNN95 - International Conference Neural Network (1995)

    Google Scholar 

  14. Kennedy, J.: The particle swarm: social adaptation of knowledge. In: Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC 1997), pp. 303–308 (1997). https://doi.org/10.1109/ICEC.1997.592326

  15. Banks, A., Vincent, J., Anyakoha, C.: A review of particle swarm optimization. Part I: background and development. Nat. Comput. 6, 467–484 (2007). https://doi.org/10.1007/s11047-007-9049-5

    Article  MathSciNet  MATH  Google Scholar 

  16. van den Bergh, F., Engelbrecht, A.P.: A new locally convergent particle swarm optimiser. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 3, p. 6 (2002). https://doi.org/10.1109/ICSMC.2002.1176018

  17. Riget, J., Vesterstrøm, J.S.: A diversity-guided particle swarm optimizer-the ARPSO. Dept. Comput. Sci Univ Aarhus Aarhus Den. Technical report. 2, 2002 (2002)

    Google Scholar 

  18. Silva, A., Neves, A., Costa, E.: An empirical comparison of particle swarm and predator prey optimisation. In: O’Neill, M., Sutcliffe, R.F.E., Ryan, C., Eaton, M., Griffith, N.J.L. (eds.) Artificial Intelligence and Cognitive Science. AICS 2002. Lecture Notes in Computer Science, vol. 2464, pp. 103–110. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45750-X_13

  19. Veeramachaneni, K., Peram, T., Mohan, C., Osadciw, L.A.: Optimization using particle swarms with near neighbor interactions. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 110–121. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45105-6_10

    Chapter  Google Scholar 

  20. Parsopoulos, K.E., Vrahatis, M.N.: Initializing the particle swarm optimizer using the nonlinear simplex method. Adv. Intell. Syst. Fuzzy Syst. Evol. Comput. 216, 1–6 (2002)

    Google Scholar 

  21. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965). https://doi.org/10.1093/comjnl/7.4.308

    Article  MathSciNet  MATH  Google Scholar 

  22. Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf. Process. Lett. 85, 317–325 (2003). https://doi.org/10.1016/S0020-0190(02)00447-7

    Article  MathSciNet  MATH  Google Scholar 

  23. Peterka, R.J.: Sensorimotor integration in human postural control. J. Neurophysiol. 88, 1097–1118 (2002)

    Article  Google Scholar 

  24. Pasma, J.H., Assländer, L., van Kordelaar, J., de Kam, D., Mergner, T., Schouten, A.C.: Evidence in support of the independent channel model describing the sensorimotor control of human stance using a humanoid robot. Front. Comput. Neurosci. 12, 13 (2018)

    Article  Google Scholar 

  25. Peterka, R.J.: Simplifying the complexities of maintaining balance. IEEE Eng. Med. Biol. Mag. 22, 63–68 (2003). https://doi.org/10.1109/MEMB.2003.1195698

    Article  Google Scholar 

  26. Hill, A.V.: The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. B Biol. Sci. 126, 136–195 (1938). https://doi.org/10.1098/rspb.1938.0050

  27. Cofer, D., Cymbalyuk, G., Reid, J., Zhu, Y., Heitler, W., Edwards, D.: AnimatLab: a 3D graphics environment for neuromechanical simulations. J. Neurosci. Meth. 187, 280–288 (2010). https://doi.org/10.1016/j.jneumeth.2010.01.005

    Article  Google Scholar 

  28. Thelen, D.G.: Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. J. Biomech. Eng. 125, 70–77 (2003). https://doi.org/10.1115/1.1531112

    Article  Google Scholar 

  29. Pearson, K.G., Ekeberg, Ö., Büschges, A.: Assessing sensory function in locomotor systems using neuro-mechanical simulations. Trends Neurosci. 29, 625–631 (2006). https://doi.org/10.1016/j.tins.2006.08.007

    Article  Google Scholar 

  30. Meijer, K., Grootenboer, H.J., Koopman, H.F.J.M., van der Linden, B.J.J.J., Huijing, P.A.: A Hill type model of rat medial gastrocnemius muscle that accounts for shortening history effects. J. Biomech. 31, 555–563 (1998). https://doi.org/10.1016/S0021-9290(98)00048-7

    Article  Google Scholar 

  31. Hilts, W.W., Szczecinski, N.S., Quinn, R.D., Hunt, A.J.: A Dynamic neural network designed using analytical methods produces dynamic control properties similar to an analogous classical controller. IEEE Control Syst. Lett. 3, 320–325 (2019). https://doi.org/10.1109/LCSYS.2018.2871126

    Article  Google Scholar 

  32. Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6, 58–73 (2002). https://doi.org/10.1109/4235.985692

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Stu McNeal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

McNeal, J.S., Hunt, A. (2023). A Simple Dynamic Controller for Emulating Human Balance Control. In: Meder, F., Hunt, A., Margheri, L., Mura, A., Mazzolai, B. (eds) Biomimetic and Biohybrid Systems. Living Machines 2023. Lecture Notes in Computer Science(), vol 14158. Springer, Cham. https://doi.org/10.1007/978-3-031-39504-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39504-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39503-1

  • Online ISBN: 978-3-031-39504-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics