Abstract
This paper presents a biologically inspired control system developed for maintaining balance in a simulated human atop an oscillating platform. This work advances our previous research by adapting a human balance controller to an inverted pendulum and controlled by linear-Hill muscle models. To expedite neuron/synapse parameter value selection, we employ a novel two-stage process that pairs a previously developed analytic method with particle swarm optimization. Using the parameter values found analytically as inputs for particle swarm optimization (PSO), we take advantage of the benefits of each method while avoiding their pitfalls. Our results show that PSO optimization allowed improved balance control from modest (<10%) changes to the synaptic parameters. The improved performance was accompanied by muscle coactivations, however, and further refinement is needed to better align overall behavior of the neural controller with biological systems.
This work was supported by NSF DBI 2015317 as part of the NSF/CIHR/DFG/FRQ/UKRI-MRC next Generation Networks for Neuroscience Program
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
See Table 29, https://www.cdc.gov/nchs/data/series/sr_03/sr03-046-508.pdf.
References
Franco, J.A.G., Padilla, J.L. del V., Cisneros, S.O.: Event-based image processing using a neuromorphic vision sensor. In: 2013 IEEE International Autumn Meeting on Power Electronics and Computing (ROPEC), pp. 1–6 (2013). https://doi.org/10.1109/ROPEC.2013.6702715
Chu, M., et al.: Neuromorphic hardware system for visual pattern recognition with memristor array and CMOS NEURON. IEEE Trans. Ind. Electron. 62, 2410–2419 (2015). https://doi.org/10.1109/TIE.2014.2356439
Corradi, F., You, H., Giulioni, M., Indiveri, G.: Decision making and perceptual bistability in spike-based neuromorphic VLSI systems. In: 2015 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2708–2711 (2015). https://doi.org/10.1109/ISCAS.2015.7169245
Chen, W., Ren, G., Wang, J., Liu, D.: An adaptive locomotion controller for a hexapod robot: CPG, kinematics and force feedback. Sci. Chin. Inf. Sci. 57(11), 1–18 (2014). https://doi.org/10.1007/s11432-014-5148-y
Deng, K., et al.: Neuromechanical model of rat hind limb walking with two layer CPGs and muscle synergies. In: Vouloutsi, V., et al. (eds.) Living Machines 2018. LNCS (LNAI), vol. 10928, pp. 134–144. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95972-6_15
Endo, G., Morimoto, J., Matsubara, T., Nakanishi, J., Cheng, G.: Learning CPG-based biped locomotion with a policy gradient method: application to a humanoid robot. Int. J. Robot. Res. 27, 213–228 (2008). https://doi.org/10.1177/0278364907084980
Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: A Functional subnetwork approach to designing synthetic nervous systems that control legged robot locomotion. Front. Neurorobotics. 11, (2017). https://doi.org/10.3389/fnbot.2017.00037
Hilts, W.W., Szczecinski, N.S., Quinn, R.D., Hunt, A.J.: Emulating balance control observed in human test subjects with a neural network. In: Vouloutsi, V., et al. (eds.) Living Machines 2018. LNCS (LNAI), vol. 10928, pp. 200–212. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95972-6_21
Hilts, W.W., Szczecinski, N.S., Quinn, R.D., Hunt, A.J.: Simulation of human balance control using an inverted pendulum model. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P.F.M.J., Prescott, T., Lepora, N. (eds.) Living Machines 2017. LNCS (LNAI), vol. 10384, pp. 170–180. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63537-8_15
Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. 81, 3088–3092 (1984). https://doi.org/10.1073/pnas.81.10.3088
Beer, R.D., Gallagher, J.C.: Evolving dynamical neural networks for adaptive behavior. Adapt. Behav. 1, 91–122 (1992). https://doi.org/10.1177/105971239200100105
Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972). https://doi.org/10.1016/S0006-3495(72)86068-5
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the ICNN95 - International Conference Neural Network (1995)
Kennedy, J.: The particle swarm: social adaptation of knowledge. In: Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC 1997), pp. 303–308 (1997). https://doi.org/10.1109/ICEC.1997.592326
Banks, A., Vincent, J., Anyakoha, C.: A review of particle swarm optimization. Part I: background and development. Nat. Comput. 6, 467–484 (2007). https://doi.org/10.1007/s11047-007-9049-5
van den Bergh, F., Engelbrecht, A.P.: A new locally convergent particle swarm optimiser. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 3, p. 6 (2002). https://doi.org/10.1109/ICSMC.2002.1176018
Riget, J., Vesterstrøm, J.S.: A diversity-guided particle swarm optimizer-the ARPSO. Dept. Comput. Sci Univ Aarhus Aarhus Den. Technical report. 2, 2002 (2002)
Silva, A., Neves, A., Costa, E.: An empirical comparison of particle swarm and predator prey optimisation. In: O’Neill, M., Sutcliffe, R.F.E., Ryan, C., Eaton, M., Griffith, N.J.L. (eds.) Artificial Intelligence and Cognitive Science. AICS 2002. Lecture Notes in Computer Science, vol. 2464, pp. 103–110. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45750-X_13
Veeramachaneni, K., Peram, T., Mohan, C., Osadciw, L.A.: Optimization using particle swarms with near neighbor interactions. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 110–121. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45105-6_10
Parsopoulos, K.E., Vrahatis, M.N.: Initializing the particle swarm optimizer using the nonlinear simplex method. Adv. Intell. Syst. Fuzzy Syst. Evol. Comput. 216, 1–6 (2002)
Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965). https://doi.org/10.1093/comjnl/7.4.308
Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf. Process. Lett. 85, 317–325 (2003). https://doi.org/10.1016/S0020-0190(02)00447-7
Peterka, R.J.: Sensorimotor integration in human postural control. J. Neurophysiol. 88, 1097–1118 (2002)
Pasma, J.H., Assländer, L., van Kordelaar, J., de Kam, D., Mergner, T., Schouten, A.C.: Evidence in support of the independent channel model describing the sensorimotor control of human stance using a humanoid robot. Front. Comput. Neurosci. 12, 13 (2018)
Peterka, R.J.: Simplifying the complexities of maintaining balance. IEEE Eng. Med. Biol. Mag. 22, 63–68 (2003). https://doi.org/10.1109/MEMB.2003.1195698
Hill, A.V.: The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. B Biol. Sci. 126, 136–195 (1938). https://doi.org/10.1098/rspb.1938.0050
Cofer, D., Cymbalyuk, G., Reid, J., Zhu, Y., Heitler, W., Edwards, D.: AnimatLab: a 3D graphics environment for neuromechanical simulations. J. Neurosci. Meth. 187, 280–288 (2010). https://doi.org/10.1016/j.jneumeth.2010.01.005
Thelen, D.G.: Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. J. Biomech. Eng. 125, 70–77 (2003). https://doi.org/10.1115/1.1531112
Pearson, K.G., Ekeberg, Ö., Büschges, A.: Assessing sensory function in locomotor systems using neuro-mechanical simulations. Trends Neurosci. 29, 625–631 (2006). https://doi.org/10.1016/j.tins.2006.08.007
Meijer, K., Grootenboer, H.J., Koopman, H.F.J.M., van der Linden, B.J.J.J., Huijing, P.A.: A Hill type model of rat medial gastrocnemius muscle that accounts for shortening history effects. J. Biomech. 31, 555–563 (1998). https://doi.org/10.1016/S0021-9290(98)00048-7
Hilts, W.W., Szczecinski, N.S., Quinn, R.D., Hunt, A.J.: A Dynamic neural network designed using analytical methods produces dynamic control properties similar to an analogous classical controller. IEEE Control Syst. Lett. 3, 320–325 (2019). https://doi.org/10.1109/LCSYS.2018.2871126
Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6, 58–73 (2002). https://doi.org/10.1109/4235.985692
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
McNeal, J.S., Hunt, A. (2023). A Simple Dynamic Controller for Emulating Human Balance Control. In: Meder, F., Hunt, A., Margheri, L., Mura, A., Mazzolai, B. (eds) Biomimetic and Biohybrid Systems. Living Machines 2023. Lecture Notes in Computer Science(), vol 14158. Springer, Cham. https://doi.org/10.1007/978-3-031-39504-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-39504-8_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-39503-1
Online ISBN: 978-3-031-39504-8
eBook Packages: Computer ScienceComputer Science (R0)