From Curves to Words and Back Again: Geometric Computation of Minimum-Area Homotopy | SpringerLink
Skip to main content

From Curves to Words and Back Again: Geometric Computation of Minimum-Area Homotopy

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2023)

Abstract

Let \(\gamma \) be a generic closed curve in the plane. Samuel Blank, in his 1967 Ph.D. thesis, determined if \(\gamma \) is self-overlapping by geometrically constructing a combinatorial word from \(\gamma \). More recently, Zipei Nie, in an unpublished manuscript, computed the minimum homotopy area of \(\gamma \) by constructing a combinatorial word algebraically. We provide a unified framework for working with both words and determine the settings under which Blank’s word and Nie’s word are equivalent. Using this equivalence, we give a new geometric proof for the correctness of Nie’s algorithm. Unlike previous work, our proof is constructive which allows us to naturally compute the actual homotopy that realizes the minimum area. Furthermore, we contribute to the theory of self-overlapping curves by providing the first polynomial-time algorithm to compute a self-overlapping decomposition of any closed curve \(\gamma \) with minimum area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    also known as the unsigned Gauss code [5, 12].

  2. 2.

    In other words, the cables are  [22].

  3. 3.

    Blank called these pairings groupings.

References

  1. Blank, S.J.: Extending Immersions and Regular Homotopies in Codimension 1. PhD thesis, Brandeis University (1967)

    Google Scholar 

  2. Brandenbursky, M., Gal, Ś, Kȩdra, J., Marcinkowski, M.: The cancelation norm and the geometry of bi-invariant word metrics. Glasg. Math. J. 58, 153–176 (2015)

    Article  MATH  Google Scholar 

  3. Bringmann, K., Grandoni, F., Saha, B., Williams, V.V.: Truly subcubic algorithms for language edit distance and RNA folding via fast bounded-difference min-plus product. SIAM J. Comput. 48(2), 481–512 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chambers, E., Wang, Y.: Measuring similarity between curves on 2-manifolds via homotopy area. In: 29th ACM Symposium on Computational Geometry, pp. 425–434 (2013)

    Google Scholar 

  5. Chang, H.-C., Erickson, J.: Untangling planar curves. Discrete Comput. Geom. 58, 889 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Frisch, D.: Extending immersions into the sphere (2010). http://arxiv.org/abs/1012.4923

  7. Eppstein, D., Mumford, E.: Self-overlapping curves revisited. In: 20th ACM-SIAM Symposium on Discrete Algorithms, pp. 160–169 (2009)

    Google Scholar 

  8. Erickson, J.: One-dimensional computational topology lecture notes. Lecture 7 (2020). Dhttps://mediaspace.illinois.edu/channel/CS+598+JGE+-%C2%A0Fall+2020/177766461/

  9. Evans, P.: On Self-Overlapping Curves, Interior Boundaries, and Minimum Area Homotopies. Bachelor’s thesis, Tulane University (2018)

    Google Scholar 

  10. Evans, P., Fasy, B.T., Wenk, C.: Combinatorial properties of self-overlapping curves and interior boundaries. In: 36th ACM Symposium on Computer Geometry (2020)

    Google Scholar 

  11. Fasy, B.T., Karakoç, S., Wenk, C.: On minimum area homotopies of normal curves in the plane (2017). http://arxiv.org/abs/1707.02251

  12. Gauss, C.F.: Nachlass. I. Zur geometria situs. Werke 8, 271–281 (1900)

    Google Scholar 

  13. Karakoç, S.: On Minimum Homotopy Areas. PhD thesis, Tulane University (2017)

    Google Scholar 

  14. Li, Y., Barbič, J.: Immersion of self-intersecting solids and surfaces. ACM Trans. on Graph. 45, 1–14 (2018)

    Google Scholar 

  15. Marx, M.L.: Extensions of normal immersions of S\(^1\) into R. Trans. Amer. Math. Soc. 187, 309–326 (1974)

    MathSciNet  MATH  Google Scholar 

  16. Mukherjee, U.: Self-overlapping curves: analysis and applications. Comput. Aided Des. 40, 227–232 (2014)

    Article  Google Scholar 

  17. Nie, Z.: On the minimum area of null homotopies of curves traced twice (2014). http://arxiv.org/abs/1412.0101

  18. Nussinov, R., Jacobson, A.B.: Fast algorithm for predicting the secondary structure of single-stranded RNA. Proc. Natl. Acad. Sci. U.S.A. 77(11), 6309–6313 (1980)

    Article  Google Scholar 

  19. Poénaru, V.: Extension des immersions en codimension 1 (d’après Samuel Blank). Séminaire N. Bourbaki 1966–1968(10), 473–505 (1968)

    Google Scholar 

  20. Shor, P., Van Wyk, C.: Detecting and decomposing self-overlapping curves. Comput. Geom. Theory Appl. 2, 31–50 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Titus, C.J.: The combinatorial topology of analytic functions on the boundary of a disk. Acta Math. 106(1–2), 45–64 (1961)

    Google Scholar 

  22. Toussaint, G.: On separating two simple polygons by a single translation. Discrete Comput. Geom. 4(3), 265–278 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Whitney, H.: On regular closed curves in the plane. Compos. Math. 4, 276–284 (1937)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Brittany Terese Fasy and Bradley McCoy are supported by NSF grant DMS 1664858 and CCF 2046730. Carola Wenk is supported by NSF grant CCF 2107434.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley McCoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chang, HC., Fasy, B.T., McCoy, B., Millman, D.L., Wenk, C. (2023). From Curves to Words and Back Again: Geometric Computation of Minimum-Area Homotopy. In: Morin, P., Suri, S. (eds) Algorithms and Data Structures. WADS 2023. Lecture Notes in Computer Science, vol 14079. Springer, Cham. https://doi.org/10.1007/978-3-031-38906-1_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38906-1_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38905-4

  • Online ISBN: 978-3-031-38906-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics