Prior Segmentation and Attention Based Approach to Neoplasms Recognition by Single-Channel Monochrome Computer Tomography Snapshots | SpringerLink
Skip to main content

Prior Segmentation and Attention Based Approach to Neoplasms Recognition by Single-Channel Monochrome Computer Tomography Snapshots

  • Conference paper
  • First Online:
Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges (ICPR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13644))

Included in the following conference series:

  • 539 Accesses

Abstract

Computer tomography is most commonly used for diagnosing lung cancer, which is one of the deadliest cancers in the world. Online services that allow users to share their single-channel monochrome images, in particular computer tomography scans, in order to receive independent medical advice are becoming wide-spread these days. In this paper, we propose an optimization for the previously known two-staged architecture for detecting cvancerous tumors in computer tomography scans that demonstrates the state-of-the-art results on Open Joint Monochrome Lungs Computer Tomography (OJLMCT - Open Joint Monochrome Lungs Computer Tomography dataset firstly proposed in Samarin et al. [14]) dataset. Modernized architecture allows to reduce the number of weights of the neural network based model (4,920,073 parameters vs. 26,468,315 in the original model) and its inference time (0.38 s vs. 2.15 s in the original model) without loss of neoplasms recognition quality (0.996 \(F_1\) score). The proposed results were obtained using heavyweight encoder elimination, special combined loss function and watershed based method for the automated dataset markup and a Consistency Regularization approach adaptation that are described in the current paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Online medical consultation services: betterhelp (https://www.betterhelp.com/), amwell (https://amwell.com/cm/), Yandex Health (https://health.yandex.ru/), Sber Med AI (https://sbermed.ai/).

  2. 2.

    GPU: NVIDIA GeForce RTX 3060; CPU: Intel(R) Core(TM) i5-10400 CPU @ 2.90 GHz 2.90 GHz; RAM: 16 GB.

References

  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels. Technical report, EPFL (2010)

    Google Scholar 

  2. Bachman, P., Alsharif, O., Precup, D.: Learning with pseudo-ensembles. In: Advances in Neural Information Processing Systems, vol. 27, pp. 3365–3373 (2014)

    Google Scholar 

  3. Clark, K., et al.: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013). https://doi.org/10.1007/s10278-013-9622-7

    Article  Google Scholar 

  4. Goutte, C., Gaussier, E.: A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In: Losada, D.E., Fernández-Luna, J.M. (eds.) ECIR 2005. LNCS, vol. 3408, pp. 345–359. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31865-1_25

    Chapter  Google Scholar 

  5. Heuvelmans, M.A., et al.: Lung cancer prediction by deep learning to identify benign lung nodules. Lung Cancer 154, 1–4 (2021). https://doi.org/10.1016/j.lungcan.2021.01.027. https://www.sciencedirect.com/science/article/pii/S0169500221000453

  6. Jadon, S.: A survey of loss functions for semantic segmentation, pp. 1–7 (2020). https://doi.org/10.1109/CIBCB48159.2020.9277638

  7. Lalitha, K.V., Amrutha, R., Michahial, S., Shivakumar, M.: Implementation of watershed segmentation. IJARCCE 5, 196–199 (2016). https://doi.org/10.17148/IJARCCE.2016.51243

  8. Kasinathan, G., Jayakumar, S.: Cloud-based lung tumor detection and stage classification using deep learning techniques. BioMed Res. Int. 2022 (2022)

    Google Scholar 

  9. Kaur, A.: Image segmentation using watershed transform (2014)

    Google Scholar 

  10. Kobylińska, K., Orlowski, T., Adamek, M., Biecek, P.: Explainable machine learning for lung cancer screening models. Appl. Sci. 12, 1926 (2022). https://doi.org/10.3390/app12041926

  11. Kuo, C.-W., Ma, C.-Y., Huang, J.-B., Kira, Z.: FeatMatch: feature-based augmentation for semi-supervised learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 479–495. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_28

    Chapter  Google Scholar 

  12. Morozov, C., Kul’berg, H., Gombolevskij, B.: Tagged lung computer tomography results, March 2018

    Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Samarin, A., Savelev, A., Malykh, V.: Two-staged self-attention based neural model for lung cancer recognition. In: 2020 Science and Artificial Intelligence Conference (SAI ence), pp. 50–53. IEEE (2020)

    Google Scholar 

  15. Shimazaki, A., et al.: Deep learning-based algorithm for lung cancer detection on chest radiographs using the segmentation method (2022). https://doi.org/10.1038/s41598-021-04667-w

  16. Sohn, K., et al.: FixMatch: simplifying semi-supervised learning with consistency and confidence. arXiv preprint arXiv:2001.07685 (2020)

  17. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28

    Chapter  Google Scholar 

  18. Tatanov, O., Samarin, A.: LFIEM: lightweight filter-based image enhancement model. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 873–878 (2021). https://doi.org/10.1109/ICPR48806.2021.9413138

  19. Thai, A.A., Solomon, B.J., Sequist, L.V., Gainor, J.F., Heist, R.S.: Lung cancer. Lancet 398(10299), 535–554 (2021)

    Google Scholar 

  20. Xie, Q., Dai, Z., Hovy, E., Luong, M.T., Le, Q.V.: Unsupervised data augmentation for consistency training. arXiv preprint arXiv:1904.12848 (2019)

  21. Yang, H., et al.: Deep learning-based six-type classifier for lung cancer and mimics from histopathological whole slide images: a retrospective study. BMC Med. (2021). https://doi.org/10.1186/s12916-021-01953-2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandr Motyko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Samarin, A. et al. (2023). Prior Segmentation and Attention Based Approach to Neoplasms Recognition by Single-Channel Monochrome Computer Tomography Snapshots. In: Rousseau, JJ., Kapralos, B. (eds) Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges. ICPR 2022. Lecture Notes in Computer Science, vol 13644. Springer, Cham. https://doi.org/10.1007/978-3-031-37742-6_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37742-6_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37741-9

  • Online ISBN: 978-3-031-37742-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics