Abstract
In depression, affective and emotional dysfunction are important components of the clinical syndrome. At present, doctors mainly judge the real emotions of depressed patients through the naked eye, with a strong subjective consciousness. We collected images of seven expressions voluntarily imitated by 168 subjects, and then recruited 9 raters to recognize these images. The study found that depressed patients have deficits in Facial Emotion Expression, resulting in great uncertainty in their facial expressions. Therefore, we propose the Dep-Emotion to solve this problem. For the depression expression dataset with uncertainty, we use Self-Cure Network to correct the sample label to suppress the uncertainty. At the same time, the input part and downsampling block of ResNet18 are adjusted to better extract facial features. The input image is regularized by Cutout, which enhances the generalization ability of the model. The results show that Dep-Emotion achieves the best accuracy of 40.0%. The study has important implications for automatic emotion analysis and adjunctive treatment of depression.
Supported by Qilu University of Technology (Shandong Academy of Sciences).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Arnold, A.J., Winkielman, P.: Smile (but only deliberately) though your heart is aching: loneliness is associated with impaired spontaneous smile mimicry. Soc. Neurosci. 1, 1–13 (2020)
Association, A., American, P.A.: Diagnostic and statistical manual of mental disorders. Essentials Pain Med. 51(1), 4–8 (1980)
Azadi, S., Feng, J., Jegelka, S., Darrell, T.: Auxiliary image regularization for deep CNNs with noisy labels. arXiv preprint arXiv:1511.07069 (2015)
Barsoum, E., Zhang, C., Ferrer, C.C., Zhang, Z.: Training deep networks for facial expression recognition with crowd-sourced label distribution, pp. 279–283 (2016)
Darwin, C.: The expression of emotions in man and animals. Tredition Classics 123(1), 146 (2009)
Dehghani, M., Severyn, A., Rothe, S., Kamps, J.: Avoiding your teacher’s mistakes: training neural networks with controlled weak supervision. arXiv preprint arXiv:1711.00313 (2017)
DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552 (2017)
Dhall, A., Goecke, R., Ghosh, S., Joshi, J., Hoey, J., Gedeon, T.: From individual to group-level emotion recognition: Emotiw 5, 524–528 (2017)
Dhall, A., Goecke, R., Joshi, J., Hoey, J., Gedeon, T.: Emotiw 2016: video and group-level emotion recognition challenges, pp. 427–432 (2016)
Dhall, A., Ramana Murthy, O., Goecke, R., Joshi, J., Gedeon, T.: Video and image based emotion recognition challenges in the wild: Emotiw 2015, 423–426 (2015)
Dimberg, U.: Facial reactions to facial expressions. Psychophysiology 19(6), 643–647 (1982)
Donahue, J., et al.: Decaf: a deep convolutional activation feature for generic visual recognition, 647–655 (2014)
Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Ekman, P.: Strong evidence for universals in facial expressions: a reply to Russell’s mistaken critique. Psychol. Bull. 115(2), 268–287 (1994)
Ekman, P.: Constants across culture in the face and emotion. J. Pers. Soc. Psychol. 17 (1971)
Fasel, B.: Head-pose invariant facial expression recognition using convolutional neural networks. In: Proceedings of the Fourth IEEE International Conference on Multimodal Interfaces, pp. 529–534. IEEE (2002)
Fasel, B.: Robust face analysis using convolutional neural networks 2, 40–43 (2002)
Gaebel, W., WöLwer, W.: Facial expression and emotional face recognition in schizophrenia and depression 242(1), 46–52 (1992)
Gessler, S.: Schizophrenic inability to judge facial emotion: a controlled study. British J. Clin. Psychol. 28 (2011)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation, pp. 580–587 (2014)
Goodfellow, I.J., et al.: Challenges in representation learning: a report on three machine learning contests. In: Lee, M., Hirose, A., Hou, Z.-G., Kil, R.M. (eds.) ICONIP 2013. LNCS, vol. 8228, pp. 117–124. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42051-1_16
Hamilton, M.: The Hamilton rating scale for depression. Springer (1986). https://doi.org/10.1007/978-3-030-22009-9_826
He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., Li, M.: Bag of tricks for image classification with convolutional neural networks, pp. 558–567 (2019)
Li, J., et al.: Facial expression recognition with faster R-CNN. Procedia Comput. Sci. 107, 135–140 (2017)
Li, S., Deng, W., Du, J.: Reliable crowdsourcing and deep locality-preserving learning for expression recognition in the wild, pp. 2852–2861 (2017)
Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended cohn-kanade dataset (ck+): a complete dataset for action unit and emotion-specified expression, pp. 94–101 (2010)
Matsugu, M., Mori, K., Mitari, Y., Kaneda, Y.: Subject independent facial expression recognition with robust face detection using a convolutional neural network. Neural Netw. 16(5–6), 555–559 (2003)
Minaee, S., Minaei, M., Abdolrashidi, A.: Deep-emotion: Facial expression recognition using attentional convolutional network. Sensors 21(9), 3046 (2021)
Mnih, V., Hinton, G.E.: Learning to label aerial images from noisy data, pp. 567–574 (2012)
Natarajan, N., Dhillon, I.S., Ravikumar, P., Tewari, A.: Learning with noisy labels. In: Advances in Neural Information Processing Systems, vol. 26, pp. 1196–1204 (2013)
Shan, C., Gong, S., Mcowan, P.W.: Facial expression recognition based on local binary patterns: a comprehensive study. Image Vis. Comput. 27(6), 803–816 (2009)
Shan, L., Deng, W.: Deep facial expression recognition: a survey. IEEE Trans. Affect. Comput. (99) (2018)
Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition, pp. 806–813 (2014)
Sukhbaatar, S., Fergus, R.: Learning from noisy labels with deep neural networks. arXiv preprint arXiv:1406.20802(3), 4 (2014)
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. IEEE, pp. 2818–2826 (2016)
Tian, Y.I., Kanade, T., Cohn, J.F.: Recognizing action units for facial expression analysis. IEEE Trans. Pattern Anal. Mach. Intell. 23(2), 97–115 (2001)
Tracy, A., Weightman, M.J., Baune, B.T.: Symptom severity of depressive symptoms impacts on social cognition performance in current but not remitted major depressive disorder. Front. Psychol. 6, 1118 (2015)
Veit, A., Alldrin, N., Chechik, G., Krasin, I., Gupta, A., Belongie, S.: Learning from noisy large-scale datasets with minimal supervision, pp. 839–847 (2017)
Vick, S.J., Waller, B.M., Parr, L.A., Smith Pasqualini, M.C., Bard, K.A.: A cross-species comparison of facial morphology and movement in humans and chimpanzees using the facial action coding system (facs). J. Nonverbal Behav. 31(1), 1–20 (2007)
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features 1, I-I (2001)
Wang, K., Peng, X., Yang, J., Lu, S., Qiao, Y.: Suppressing uncertainties for large-scale facial expression recognition, pp. 6897–6906 (2020)
Wexler, B.E., Levenson, L., Warrenburg, S., Price, L.H.: Decreased perceptual sensitivity to emotion-evoking stimuli in depression. Psych. Res. 51(2), 127 (1994)
Wood, A., Rychlowska, M., Korb, S., Niedenthal, P.: Fashioning the face: sensorimotor simulation contributes to facial expression recognition. Trends Cogn. Sci. 20(3), 227–240 (2016)
Zeng, J., Shan, S., Chen, X.: Facial expression recognition with inconsistently annotated datasets, pp. 222–237 (2018)
Zhao, G., Pietikainen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29, 915–928 (2007)
Zhi, R., Flierl, M., Ruan, Q., Kleijn, W.B.: Graph-preserving sparse nonnegative matrix factorization with application to facial expression recognition. IEEE Trans. Syst. Man Cybern. B Cybern. 41(1), 38–52 (2011)
Zhong, L., Liu, Q., Yang, P., Liu, B., Huang, J., Metaxas, D.N.: Learning active facial patches for expression analysis, pp. 2562–2569 (2012)
Acknowledgements
This work was supported by the Shandong Provincial Natural Science Foundation, China (Grant No: ZR2021MF079, ZR2020MF039). The National Natural Science Foundation of China (Grant No: 81573829). The 20 Planned Projects in Jinan (No.2021GXRC046). The Key Research and Development Program of Shandong Province (Grant No.2020CXGC010901).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 Springer Nature Switzerland AG
About this paper
Cite this paper
Fu, G., Ye, J., Wang, Q. (2023). Dep-Emotion: Suppressing Uncertainty to Recognize Real Emotions in Depressed Patients. In: Rousseau, JJ., Kapralos, B. (eds) Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges. ICPR 2022. Lecture Notes in Computer Science, vol 13643. Springer, Cham. https://doi.org/10.1007/978-3-031-37660-3_46
Download citation
DOI: https://doi.org/10.1007/978-3-031-37660-3_46
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-37659-7
Online ISBN: 978-3-031-37660-3
eBook Packages: Computer ScienceComputer Science (R0)