A Novel Framework for Multiagent Knowledge-Based Federated Learning Systems | SpringerLink
Skip to main content

Abstract

Multiagent systems promote a decentralized and distributed approach that enable the division of complex problems into smaller parts. The use of multiagent systems also enables the representation of physical entities, such as persons, pursuing their own goals in an active and proactive society. Currently developments are promoting the idea of having machine learning models in agents to enable intelligent decisions in agents-side. However, machine learning, required assess to large datasets that cannot be available locally to individual agents, demanding the sharing of data or the use of public available datasets to training models for a given agent. To address this issue, this paper proposes the use of federated learning to enable the existence of a collaborative learning model that respects the data privacy, security, and ownership and can be in compliance with the European General Data Protection Regulation (EU GDPR). This paper proposes a novel framework called Python-based framework for agent-based communities powered by federated learning (PEAK FL) that will provide all the necessary tools to build powerful federated learning solutions based on agent communities. This framework provides the users the ability to implement and test hybrid solutions (multiagent-based federated learning systems) in a simple-to-use way, removing the unnecessary boilerplates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. European Union, General Data Protection Regulation. https://gdpr.eu/

  2. Li, Q., et al.: A survey on federated learning systems: vision, hype and reality for data privacy and protection. IEEE Trans. Knowl. Data Eng. 35, 3347 (2023)

    Article  Google Scholar 

  3. Zhu, H., Xu, J., Liu, S., Jin, Y.: Federated Learning on Non-IID Data: A Survey. ArXiv (2021)

    Google Scholar 

  4. Mahlool, D.H., Abed, M.H.: A comprehensive survey on federated learning: concept and applications. In: Lecture Notes on Data Engineering and Communications Technologies (2022)

    Google Scholar 

  5. Morell, J.Á., Dahi, Z., Chicano, F., Luque, G., Alba, E.: Optimising communication overhead in federated learning using NSGA-II. In: Jiménez Laredo, J.L., Hidalgo, J.I., Babaagba, K.O. (eds.) EvoApplications 2022. LNCS, vol. 13224, pp. 317–333. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-02462-7_21

    Chapter  Google Scholar 

  6. Mendieta, M., Yang, T., Wang, P., Lee, M., Ding, Z., Chen, C.: Local learning matters: rethinking data heterogeneity in federated learning. In: Computer Vision and Pattern Recognition 2022 (2021)

    Google Scholar 

  7. Liu, P., Xu, X., Wang, W.: Threats Attacks and Defenses to Federated Learning: Issues, Taxonomy and Perspectives. Cybersecurity 5(1), 1–19 (2022)

    Article  Google Scholar 

  8. Balaji, P.G., Srinivasan, D.: An introduction to multi-agent systems. In: Srinivasan, D., Jain, L.C. (eds.) Innovations in Multi-Agent Systems and Applications – 1, Studies in Computational Intelligence, vol. 310, pp. 1–27. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14435-6_1

    Chapter  Google Scholar 

  9. Santos, G., et al.: Semantic services catalog for multiagent systems society. In: Dignum, F., Corchado, J.M., De La Prieta, F. (eds.) PAAMS 2021. LNCS (LNAI), vol. 12946, pp. 229–240. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85739-4_19

    Chapter  Google Scholar 

  10. Santos, G., Pinto, T., Vale, Z., Corchado, J.M.: Semantic interoperability for multiagent simulation and decision support in power systems. In: De La Prieta, F., El Bolock, A., Durães, D., Carneiro, J., Lopes, F., Julian, V. (eds.) PAAMS 2021. CCIS, vol. 1472, pp. 215–226. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85710-3_18

    Chapter  Google Scholar 

  11. Cardoso, R.C., Ferrando, A.: A review of agent-based programming for multi-agent systems. Computers 10, 16 (2021)

    Article  Google Scholar 

  12. Fourez, T., Verstaevel, N., Migeon, F., Schettini, F., Amblard, F.: In: Dignum, F., Mathieu, P., Corchado, J.M., De La Prieta, F. (eds.) Advances in Practical Applications of Agents, Multi-Agent Systems, and Complex Systems Simulation, The PAAMS Collection (2022), vol. 13616, pp. 166–178. Springer, Cham (2022)

    Chapter  Google Scholar 

  13. Bajo, J., De la Prieta, F., Corchado, J.M., Rodríguez, S.: A low-level resource allocation in an agent-based cloud computing platform. Appl. Softw. Comput. 48, 716 (2016)

    Article  Google Scholar 

  14. Santos, G., Gomes, L., Pinto, T., Faria, P., Vale, Z.: MARTINE’s real-time local market simulation with a semantically interoperable society of multi-agent systems. Sustain. Energy Grids Netw. 33, 100995 (2023)

    Article  Google Scholar 

  15. Pereira, H., Ribeiro, B., Gomes, L., Vale, Z.: Smart grid ecosystem modeling using a novel framework for heterogenous agent communities. Sustainability 14, 15983 (2022)

    Article  Google Scholar 

  16. Rincon, J., Julian, V., Carrascosa, C.: FLaMAS: federated learning based on a SPADE MAS. Appl. Sci. 12, 3701 (2022)

    Article  Google Scholar 

  17. Znaidi, M.R., Gupta, G., Bogdan, P.: Secure distributed/federated learning: prediction-privacy trade-off for multi-agent system. ArXiv (2022)

    Google Scholar 

  18. Zhang, S.Q., Lin, J., Zhang, Q.: A multi-agent reinforcement learning approach for efficient client selection in federated learning. Proc. AAAI Conf. Artif. Intell. 36, 9091 (2022)

    Google Scholar 

  19. Xu, M., et al.: Multiagent federated reinforcement learning for secure incentive mechanism in intelligent cyber-physical systems. IEEE Internet Things J. 9, 22095 (2022)

    Article  Google Scholar 

  20. Ghosh, A., Chung, J., Yin, D., Ramchandran, K.: An efficient framework for clustered federated learning. IEEE Trans. Inf. Theory 68, 8076 (2022)

    Article  MathSciNet  Google Scholar 

  21. Long, G., Xie, M., Shen, T., Zhou, T., Wang, X., Jiang, J.: Multi-center federated learning: clients clustering for better personalization. World Wide Web 26, 481 (2023)

    Article  Google Scholar 

  22. Fiosina, J., Fiosins, M.: Density-based clustering in cloud-oriented collaborative multi-agent systems. Hybrid Artif. Intell. Syst. 2013, 639–648 (2013)

    Article  Google Scholar 

  23. Chaimontree, S., Atkinson, K., Coenen, F.: A multi-agent based approach to clustering: harnessing the power of agents, agents and data mining. Interaction 2021, 16–29 (2012)

    Google Scholar 

  24. Ribeiro, B., Pereira, H., Gomes, L., Vale, Z.: Python-based ecosystem for agent communities simulation. In: Pablo Gracia, B., et al. (eds.) 17th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2022). SOCO 2022, vol. 531, pp. 62–71. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-18050-7_7

    Chapter  Google Scholar 

  25. Beutel, D.J., et al.: Flower: A Friendly Federated Learning Research Framework. ArXiv (2020)

    Google Scholar 

  26. Internet Engineering Task Force, Extensible Messaging and Presence Protocol.https://xmpp.org/

  27. Bi, Y., Xue, B., Zhang, M.: Genetic programming with image-related operators and a flexible program structure for feature learning in image classification. IEEE Trans. Evol. Comput. 25, 87 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This article is a result of the project RETINA (NORTE-01-0145-FEDER-000062), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). The authors acknowledge the work facilities and equipment provided by GECAD research center (UIDB/00760/2020) to the project team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zita Vale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ribeiro, B., Gomes, L., Barbarroxa, R., Vale, Z. (2023). A Novel Framework for Multiagent Knowledge-Based Federated Learning Systems. In: Mathieu, P., Dignum, F., Novais, P., De la Prieta, F. (eds) Advances in Practical Applications of Agents, Multi-Agent Systems, and Cognitive Mimetics. The PAAMS Collection. PAAMS 2023. Lecture Notes in Computer Science(), vol 13955. Springer, Cham. https://doi.org/10.1007/978-3-031-37616-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37616-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37615-3

  • Online ISBN: 978-3-031-37616-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics