Investigation of Integrating Solution Techniques for Lifelong MAPD Problem Considering Endpoints | SpringerLink
Skip to main content

Investigation of Integrating Solution Techniques for Lifelong MAPD Problem Considering Endpoints

  • Conference paper
  • First Online:
Advances in Practical Applications of Agents, Multi-Agent Systems, and Cognitive Mimetics. The PAAMS Collection (PAAMS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13955))

  • 510 Accesses

Abstract

The lifelong multiagent pickup-and-delivery problem has been studied for autonomous carrier robots that perform tasks continuously generated on demand in warehouses. It is an extension of continuous multiagent pathfinding problems, and a set of move paths along which agents simultaneously travel without collision is continuously solved for dynamically updated source and destination locations. Fundamental solution methods employ endpoints (EPs) that can be either beginning or end locations of agents’ move paths. EPs are used to consider the situations where some paths are locked by reservation, and deadlocks among reserved paths need to be avoided. While several heuristic techniques have been proposed to improve the solution method, there have been opportunities to investigate their effect and influence in order to integrate these techniques. As an analysis of solution techniques with endpoints for lifelong MAPD problems, we integrated several solution techniques in stages and experimentally investigated their effects and influence. Here, we experimentally present the effect of the proposed approach and generally consider the possibilities of integrated efficient methods. Our results show how the redundancies of problems and move paths can be reduced by the integrated techniques. On the other hand, there are several trade-offs among the heuristics combined for the concurrency of tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barer, M., Sharon, G., Stern, R., Felner, A.: Suboptimal variants of the conflict-based search algorithm for the multi-agent pathfinding problem. In: Proceedings of the Seventh Annual Symposium on Combinatorial Search (SoCS 2014), vol. 5, no. 1, pp. 19–27 (2014). https://ojs.aaai.org/index.php/SOCS/article/view/18315

  2. Grenouilleau, F., van Hoeve, W.J., Hooker, J.: A multi-label A* algorithm for multi-agent pathfinding. In: Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling, pp. 181–185 (2019)

    Google Scholar 

  3. Hart, P., N.N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Google Scholar 

  4. Hart, P., N.N., Raphael, B.: Correction to a formal basis for the heuristic determination of minimum-cost paths. SIGART Newsl. (37), 28–29 (1972). https://dl.acm.org/doi/10.1145/1056777.1056779

  5. Li, J., Tinka, A., Kiesel, S., Durham, J.W., Kumar, T.K.S., Koenig, S.: Lifelong multi-agent path finding in large-scale warehouses. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, pp. 11272–11281 (2021)

    Google Scholar 

  6. Liu, M., Ma, H., Li, J., Koenig, S.: Task and path planning for multi-agent pickup and delivery. In: Proceedings of the 18th International Conference on Autonomous Agents and Multiagent Systems, pp. 1152–1160 (2019)

    Google Scholar 

  7. Ma, H., Harabor, D., Stuckey, P.J., Li, J., Koenig, S.: Searching with consistent prioritization for multi-agent path finding. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, pp. 7643–7650 (2019)

    Google Scholar 

  8. Ma, H., Li, J., Kumar, T.S., Koenig, S.: Lifelong multi-agent path finding for online pickup and delivery tasks. In: Proceedings of the 16th Conference on Autonomous Agents and Multiagent Systems, pp. 837–845 (2017)

    Google Scholar 

  9. Okumura, K., Machida, M., Défago, X., Tamura, Y.: Priority inheritance with backtracking for iterative multi-agent path finding. Artif. Intell. 310, 103752 (2022). https://www.sciencedirect.com/science/article/pii/S0004370222000923?via%3Dihub

  10. Okumura, K., Tamura, Y., Défago, X.: winPIBT: expanded prioritized algorithm for iterative multi-agent path finding. CoRR abs/1905.10149 (2019). http://arxiv.org/abs/1905.10149

  11. Sharon, G., Stern, R., Felner, A., Sturtevant, N.R.: Conflict-based search for optimal multi-agent pathfinding. Artif. Intell. 219, 40–66 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Shimokawa, M., Matsui, T.: Improvement of task allocation in TP algorithm for MAPD problem by relaxation of movement limitation and estimation of pickup time. Trans. Jpn. Soc. Artif. Intell. 37(3), A-L84 1–13 (2022)

    Google Scholar 

  13. Silver, D.: Cooperative Pathfinding, pp. 117–122 (2005)

    Google Scholar 

  14. Čáp, M., Vokřínek, J., Kleiner, A.: Complete decentralized method for on-line multi-robot trajectory planning in well-formed infrastructures. In: Proceedings of the Twenty-Fifth International Conference on Automated Planning and Scheduling, pp. 324–332 (2015)

    Google Scholar 

  15. Yamauchi, T., Miyashita, Y., Sugawara, T.: Standby-based deadlock avoidance method for multi-agent pickup and delivery tasks. In: Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems, pp. 1427–1435 (2022)

    Google Scholar 

Download references

Acknowledgements

This study was supported in part by The Public Foundation of Chubu Science and Technology Center (the thirty-third grant for artificial intelligence research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Matsui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Matsui, T. (2023). Investigation of Integrating Solution Techniques for Lifelong MAPD Problem Considering Endpoints. In: Mathieu, P., Dignum, F., Novais, P., De la Prieta, F. (eds) Advances in Practical Applications of Agents, Multi-Agent Systems, and Cognitive Mimetics. The PAAMS Collection. PAAMS 2023. Lecture Notes in Computer Science(), vol 13955. Springer, Cham. https://doi.org/10.1007/978-3-031-37616-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37616-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37615-3

  • Online ISBN: 978-3-031-37616-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics