Fire Severity and Vegetation Recovery Determination Using GEE and Sentinel-2: The Case of Peschici Fire | SpringerLink
Skip to main content

Fire Severity and Vegetation Recovery Determination Using GEE and Sentinel-2: The Case of Peschici Fire

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 Workshops (ICCSA 2023)

Abstract

We propose an accurate and rapid methodology for the extraction of spatio-temporal fire features using Sentinel 2 products and the Google Earth Engine (GEE) platform. All Sentinel 2 images available in the GEE platform were clipped using the fire area mask and then the NBR, NDVI. dNBR and RdNBR indices were derived. The differential values of NBR, NDVI, dNBR and RdNBR were obtained by calculating the difference of the index values between two temporally adjacent images. The use of all available images in GEE restricted the time of occurrence of the images 5 days, excluding cloud-covered images and shortening the processing time of each satellite image. The results obtained showed that the proposed methodology allows for the rapid and accurate identification and classification of burnt areas, and also allows for the efficient and accurate extraction of the spatio-temporal characteristics of post-fire vegetation recovery. The results obtained can be used to implement targeted post-fire vegetation restoration practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8579
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10724
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pérez-Cabello, F., Montorio, R., Alves, D.B.: Remote sensing techniques to assess post-fire vegetation recovery. Curr. Opin. Environ. Sci. Heal. 21, 100251 (2021). https://doi.org/10.1016/j.coesh.2021.100251

    Article  Google Scholar 

  2. Ghermandi, B.L., Lanorte, A., Oddi, F., Lasaponara, R.: Assessing fire severity in semiarid 19 (2019)

    Google Scholar 

  3. Santarsiero, V., et al.: Assessment of post fire soil erosion with ESA sentinel-2 data and RUSLE method in Apulia region (Southern Italy). In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12252, pp. 590–603. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58811-3_43

    Chapter  Google Scholar 

  4. Santarsiero, V., et al.: A remote sensing and geo-statistical approaches to mapping burn areas in Apulia region (Southern Italy). In: Gervasi, O., et al. (eds.) ICCSA 2021. LNCS, vol. 12954, pp. 670–681. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86979-3_47

    Chapter  Google Scholar 

  5. Lanorte, A., Danese, M., Lasaponara, R., Murgante, B.: Multiscale mapping of burn area and severity using multisensor satellite data and spatial autocorrelation analysis. Int. J. Appl. Earth Obs. Geoinf. 20, 42–51 (2012). https://doi.org/10.1016/j.jag.2011.09.005

    Article  Google Scholar 

  6. Díaz-Delgado, R., Lloret, F., Pons, X.: Influence of fire severity on plant regeneration by means of remote sensing imagery. Int. J. Remote Sens. 24, 1751–1763 (2003)

    Article  Google Scholar 

  7. Gouveia, C., DaCamara, C.C., Trigo, R.M.: Post-fire vegetation recovery in Portugal based on spot/vegetation data. Nat. Hazards Earth Syst. Sci. 10, 673–684 (2010). https://doi.org/10.5194/nhess-10-673-2010

    Article  Google Scholar 

  8. Rahman, S., Chang, H., Magill, C., Tomkins, K., Hehir, W.: Spatio-temporal assessment of fire severity and vegetation recovery utilising sentinel-2 imagery in New South Wales, Australia, pp. 9960–9963. Department of Environmental Sciences, Macquarie University, Australia (2019)

    Google Scholar 

  9. Coppoletta, M., Merriam, K.E., Collins, B.M.: Post-fire vegetation and fuel development influences fire severity patterns in reburns. Ecol. Appl. 26, 686–699 (2015). https://doi.org/10.1890/15-0225.1

    Article  Google Scholar 

  10. Zheng, Z., Zeng, Y., Li, S., Huang, W.: A new burn severity index based on land surface temperature and enhanced vegetation index. Int. J. Appl. Earth Obs. Geoinf. 45, 84–94 (2016). https://doi.org/10.1016/j.jag.2015.11.002

    Article  Google Scholar 

  11. Nolè, G., Lasaponara, R., Lanorte, A., Murgante, B.: Quantifying urban sprawl with spatial autocorrelation techniques using multi-temporal satellite data. Int. J. Agric. Environ. Inf. Syst. 5, 20–38 (2014). https://doi.org/10.4018/IJAEIS.2014040102

    Article  Google Scholar 

  12. Scorza, F., Pilogallo, A., Saganeiti, L., Murgante, B.: Natura 2000 areas and sites of national interest (SNI): measuring (un)integration between naturalness preservation and environmental remediation policies. Sustainability 12, 2928 (2020). https://doi.org/10.3390/su12072928

    Article  Google Scholar 

  13. Ireland, G., Petropoulos, G.P.: Exploring the relationships between post-fire vegetation regeneration dynamics, topography and burn severity: a case study from the Montane Cordillera Ecozones of Western Canada. Appl. Geogr. 56, 232–248 (2015)

    Article  Google Scholar 

  14. Chen, X., et al.: Detecting post-fire burn severity and vegetation recovery using multitemporal remote sensing spectral indices and field-collected composite burn index data in a ponderosa pine forest. Int. J. Remote Sens. 32, 7905–7927 (2011)

    Article  Google Scholar 

  15. De Santis, A., Chuvieco, E.: GeoCBI: a modified version of the Composite Burn Index for the initial assessment of the short-term burn severity from remotely sensed data. Remote Sens. Environ. 113, 554–562 (2009)

    Article  Google Scholar 

  16. Xulu, S., Mbatha, N.: Burned Area Mapping over the Southern Cape Forestry Region, South Africa Using Sentinel Data within GEE Cloud Platform (2021)

    Google Scholar 

  17. Ye, J., Wang, N., Sun, M., Liu, Q., Ding, N., Li, M.: A New Method for the Rapid Determination of Fire Disturbance Events Using GEE and the VCT Algorithm—A Case Study in Southwestern and Northeastern China (2023)

    Google Scholar 

  18. Kumar, L., Mutanga, O.: Google Earth Engine applications since inception: usage, trends, and potential. Remote Sens. 10, 1509 (2018)

    Article  Google Scholar 

  19. Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R.: Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017)

    Article  Google Scholar 

  20. Konkathi, P., Shetty, A.: Inter comparison of post-fire burn severity indices of Landsat-8 and Sentinel-2 imagery using Google Earth Engine. Earth Sci. Inf. 14(2), 645–653 (2021). https://doi.org/10.1007/s12145-020-00566-2

    Article  Google Scholar 

  21. Bar, S., Parida, B.R., Pandey, A.C.: Landsat-8 and Sentinel-2 based forest fire burn area mapping using machine learning algorithms on GEE cloud platform over Uttarakhand, Western Himalaya. Remote Sens. Appl. Soc. Environ. 18, 100324 (2020). https://doi.org/10.1016/j.rsase.2020.100324

    Article  Google Scholar 

  22. Puletti, N., Chianucci, F., Castaldi, C.: Use of Sentinel-2 for forest classification in Mediterranean environments. Ann. Silvic. Res. 42, 32–38 (2018)

    Google Scholar 

  23. Filipponi, F.: Exploitation of sentinel-2 time series to map burned areas at the national level: a case study on the 2017 Italy wildfires. Remote Sens. 11, 622 (2019)

    Article  Google Scholar 

  24. Miller, J.D., et al.: Calibration and validation of the relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA. Remote Sens. Environ. 113, 645–656 (2009)

    Article  Google Scholar 

  25. Key, C., Glacier Field Station Center: Evaluate sensitivities of burn-severity mapping algorithms for different ecosystems and fire histories in the United States. Final Report to the Joint Fire Science Program (2006)

    Google Scholar 

  26. Keeley, J.E.: Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int. J. Wildl. Fire 18, 116–126 (2009)

    Article  Google Scholar 

  27. Nolè, G., et al.: Model of post fire erosion assessment using RUSLE method, GIS tools and ESA Sentinel data. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12253, pp. 505–516. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58814-4_36

    Chapter  Google Scholar 

  28. Lanfredi, M., Coluzzi, R., Imbrenda, V., Macchiato, M., Simoniello, T.: Analyzing space–time coherence in precipitation seasonality across different European climates. Remote Sens. 12, 171 (2020)

    Article  Google Scholar 

  29. Lanfredi, M., Coppola, R., D’Emilio, M., Imbrenda, V., Macchiato, M., Simoniello, T.: A geostatistics-assisted approach to the deterministic approximation of climate data. Environ. Model. Softw. 66, 69–77 (2015). https://doi.org/10.1016/j.envsoft.2014.12.009

  30. Nolè, G., et al.: Model of post fire erosion assessment using RUSLE method, GIS tools and ESA Sentinel DATA. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNTCS, vol. 12253, pp. 505–516. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58814-4_36

  31. Lanorte, A., Danese, M., Lasaponara, R., Murgante, B.: Multiscale mapping of burn area and severity using multisensor satellite data and spatial autocorrelation analysis. Int. J. Appl. Earth Obs. Geoinf. 20, 42–51 (2013)

    Google Scholar 

  32. Shakesby, R.A.: Post-wildfire soil erosion in the Mediterranean: review and future research directions. Earth-Sci. Rev. 105, 71–100 (2011). https://doi.org/10.1016/j.earscirev.2011.01.001

  33. Soverel, N.O., Perrakis, D.D.B., Coops, N.C.: Estimating burn severity from Landsat dNBR and RdNBR indices across Western Canada. Remote Sens. Environ. 114, 1896–1909 (2010). https://doi.org/10.1016/j.rse.2010.03.013

  34. Roy, D.P., Boschetti, L., Trigg, S.N.: Remote sensing of fire severity: assessing the performance of the normalized burn ratio. IEEE Geosci. Remote Sens. Lett. 3, 112–116 (2006). https://doi.org/10.1109/LGRS.2005.858485

    Article  Google Scholar 

  35. Zhu, G., Blumberg, D.G.: Classification using ASTER data and SVM algorithms: the case study of Beer Sheva, Israel. Remote Sens. Environ. 80, 233–240 (2002). https://doi.org/10.1016/S0034-4257(01)00305-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Santarsiero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santarsiero, V., Lanorte, A., Nolè, G., Cillis, G., Ronco, F.V., Murgante, B. (2023). Fire Severity and Vegetation Recovery Determination Using GEE and Sentinel-2: The Case of Peschici Fire. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14112. Springer, Cham. https://doi.org/10.1007/978-3-031-37129-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37129-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37128-8

  • Online ISBN: 978-3-031-37129-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics