Multidisciplinary Research at the Castle of Santapau (Licodia Eubea, Italy): New Data for the Research, Protection and Enhancement of the Site | SpringerLink
Skip to main content

Multidisciplinary Research at the Castle of Santapau (Licodia Eubea, Italy): New Data for the Research, Protection and Enhancement of the Site

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 Workshops (ICCSA 2023)

Abstract

Since 2019, a multidisciplinary research project is in progress at the Castle of Santapau (Licodia Eubea, Italy). Different non-invasive investigation techniques, such as proximity remote sensing (UAV) and geophysical prospecting (GPR, electromagnetic, geoelectric and seismic surveys), were integrated in order to enrich the knowledge of the site. The results will be the starting point to plan and develop restoration projects for the protection and enhancement of the castle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arcifa, L.: Dinamiche insediative nel territorio di mineo tra tardoantico e bassomedioevo il castrum di monte catalfaro. MEFRAM 113, 269–311 (2001)

    Article  Google Scholar 

  2. Patane, A.: Licodia Eubea, in F. Privitera, U. Spigo (eds.), Dall’Alcantara agli Iblei, Reg. Siciliana, Palermo: 133–135 (2005)

    Google Scholar 

  3. Bonacini, E.: Il borgo cristiano di Licodia Eubea, Trento: ed. Uniservice (2008)

    Google Scholar 

  4. Brancato, R.: Topografia della Piana di Catania. Quasar, Rome (2021)

    Google Scholar 

  5. Arcifa, L.: Dinamiche insediative e grande proprietà nella Sicilia bizantina. Uno sguardo archeo-logico. In: Martin, J.M., Peter-Custot, A., Prigent, V., (eds.), L’héritage byzantin en Italie (VIIIe-XIIe siècle). IV. Habitat et structure agraire, (Roma 17-18 dicembre 2010), Collection de l’Ecole Française de Rome 531, Rome: 237–267 (2017)

    Google Scholar 

  6. Cannizzo, P.M.: Licodia Eubea: le sue origini e la sua storia nel contesto della storia della Sicilia (1995)

    Google Scholar 

  7. Orsi, P.: Licodia Eubea, in Notizie Scavi di Antichità, pp. 435–440 (1904)

    Google Scholar 

  8. Politano, F.: La “Specus Immensus” di Licodia Eubea. Agora 52(15), 85–91 (2015)

    Google Scholar 

  9. Camera, M.: La ceramica di Licodia Eubea, Bari (2018)

    Google Scholar 

  10. Tsokas, G.N., Papazachos, C.B., Vafidis, A., Loukoyiannakis, M.Z., Vargemezis, G., Tzimeas, K.: The detection of monumental tombs buried in tumuli by seismic refraction. Geophysics 60(6), 1735–1742 (1995)

    Article  Google Scholar 

  11. Barone, I., Cassiani, G., Ourabah, A., Boaga, J., Pavoni, M., Deiana, R.: Comparison and Integration of active and passive 3D surface wave measures around the Scrovegni Chapel. In: 83rd EAGE Annual Conference & Exhibition, vol. 2022(1), pp. 1–5, European Association of Geoscientists & Engineers (2022)

    Google Scholar 

  12. Scollar, I.: Electromagnetic prospecting methods in archaeology. Archaeometry 5, 146–153 (1962)

    Article  Google Scholar 

  13. Bozzo, E., Merlanti, F., Ranieri, G., Sambuelli, L., Finzi, E.: EM-VLF soundings on the eastern hill of the archaeological site of Selinunte. Boll. Geofis. Teor. Appl. 34, 132–140 (1991)

    Google Scholar 

  14. Al-Saadi, O.S., Schmidt, V., Becken, M., Fritsch, T.: Very-high-resolution electrical resistivity imaging of buried foundations of a Roman villa near Nonnweiler Germany. Archaeol. Prospection 25(3), 209–218 (2018)

    Article  Google Scholar 

  15. Cozzolino, M., Caliò, L.M., Gentile, V., Mauriello, P., Di Meo, A.: The discovery of the theater of Akragas (Valley of Temples, Agrigento, Italy): an archaeological confirmation of the supposed buried structures from a geophysical survey. Geosciences 10(5), 161 (2020)

    Google Scholar 

  16. Cozzolino, M., Gentile, V., Giordano, C., Mauriello, P.: Imaging buried archaeological features through ground penetrating radar: the case of the ancient saepinum (Campobasso, Italy). Geosciences 10(6), 225 (2020)

    Google Scholar 

  17. Caldara, M., Ciminale, M., De Santis, V., Noviello, M.: A multidisciplinary approach to reveal and interpret ‘missing’ archaeological features at the masseria pantano site in apulia. Archaeol. Prospect. 21(4), 301–309 (2014)

    Article  Google Scholar 

  18. Urban, T.M., et al.: Magnetic detection of archaeological hearths in Alaska: a tool for investigating the full span of human presence at the gateway to North America. Quatern. Sci. Rev. 211, 73–92 (2019)

    Article  Google Scholar 

  19. Verhoeven, G.: Providing an archeological bird’seye view - an overall picture of ground-based means to execute low-altitude aerial photography (LAAP) in Archeology. Archaeol. Prospect. 16(4), 233–249 (2009)

    Article  Google Scholar 

  20. Campana, S.: Drones in archaeology state-of-the-art and future perspectives. Archaeol. Prospection 24(4), 275–296 (2017)

    Article  Google Scholar 

  21. Seitz, C., Altenbach, H.: Project Archeye – the quadrocopter as the archaelogist’s eye, ISPRS Zurich 2011 Workshop, 14–16 September 2011, Zurich. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXVIII (1/C22), 297–302 (2011)

    Google Scholar 

  22. Remondino, F., Barazzetti, L., Nex, F., Scaioni, M., Sarazzi, D.: UAV photogrammetry for mapping and 3D modelling – current status and future perspectives, ISPRS Zurich 2011 Workshop, 14–16 September 2011, Zurich. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXVIII (1/C22), 25–31 (2011)

    Google Scholar 

  23. Rinaudo, F., Chiabrando, F., Lingua, A., Spanò, A.: Archaeological site monitoring: UAV photogrammetry could be an answer. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 39(5), 583–588 (2012)

    Article  Google Scholar 

  24. Fiorillo, F., Jiménez Fernández-Palacios, B., Remondino, F., Barba, S.: 3D surveying and modelling of the archaeological area of Paestum Italy. Virtual Archaeol. Rev. 4(8), 55–60 (2013)

    Article  Google Scholar 

  25. Pueschel, H., Sauerbier, M., Eisenbeiss, H.: A 3D model of castle Landenberg (CH) from combined photogrammetric processing of terrestrial and UAV-based images. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. XXXVII(B6b), 93–98 (2008)

    Google Scholar 

  26. Cozzolino, M., Gabrielli, R., Galatà, P., Gentile, V., Greco, G., Scopinaro, E.: Combined use of 3D metric surveys and non-invasive geophysical surveys for the determination of the state of conservation of the Stylite Tower (Umm ar-Rasas, Jordan). Ann. Geophys. 62(3), SE339 (2019)

    Google Scholar 

  27. Sonnemann, T.F., Malatesta, E.H., Hofman, C.L.: Applying UAS photogrammetry to analyze spatial patterns of indigenous settlement sites in the northern Dominican Republic. Archaeology in the Age of Sensing, Forte, M., Campana S (eds), Springer, New York (2016). https://doi.org/10.1007/978-3-319-40658-9_4

  28. Orihuela, A., Molina-Fajardo, M.A.: UAV photogrammetry surveying for sustainable conservation: the case of mondújar castle (Granada, Spain). Sustainability 13, 24 (2021)

    Article  Google Scholar 

  29. Cozzolino, M., Di Meo, A., Gentile, V.: The contribution of indirect topographic surveys (photogrammetry and the laser scanner) and GPR investigations in the study of the vulnerability of the Abbey of Santa Maria a Mare, Tremiti Islands (Italy). Ann. Geophys. 62(3), (2019)

    Google Scholar 

  30. Adamopoulos, E., Rinaudo, F.: UAS-based archaeological remote sensing: review, meta-analysis and state-of-the-art. Drones 4, 46 (2020)

    Google Scholar 

  31. Agudo, P., Pajas, J., Pérez-Cabello, F., Redón, J., Lebrón, B.: The potential of drones and sensors to enhance detection of archaeological cropmarks: a comparative study between multi-spectral and thermal imagery. Drones 2, 29 (2018)

    Google Scholar 

  32. Brooke, C., Clutterbuck, B.: Mapping heterogeneous buried archaeological features using multisensor data from unmanned aerial vehicles. Remote Sens. 12, 41 (2019)

    Google Scholar 

  33. Liu, C., Cao, Y., Yang, C., Zhou, Y., Ai, M.: Pattern identification and analysis for the traditional village using low altitude UAV-borne remote sensing: multifeatured geospatial data to support rural landscape investigation, documentation and management. J. Cult. Herit. 44, 185–195 (2020)

    Article  Google Scholar 

  34. Parisi, E.I., Suma, M., Güleç Korumaz, A., Rosina, E., Tucci, G.: Aerial platforms (UAV) surveys in the VIS and TIR range. Applications on archaeology and agriculture. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLII-2/W11, 945–952 (2019). https://doi.org/10.5194/isprs-archives-XLII-2-W11-945-2019

    Article  Google Scholar 

  35. Remondino, F., Spera, M.G., Nocerino, E., Menna, F., Nex, F.: State of the art in high density image matching. Photogrammet. Rec. 29, 144–166 (2014)

    Article  Google Scholar 

  36. Zhang, J., Ten Brink, U., Toksöz, M.: Nonlinear refraction reflection travel time tomography. J. Geophys. Res. 103, 29743–29757 (1998)

    Article  Google Scholar 

  37. Mauriello, P., Patella, D.: A data-adaptive probability-based fast ERT inversion method. Prog. Electromagn. Res. 97, 275–290 (2009)

    Article  Google Scholar 

  38. Geophysical Homepage (2023). www.geophysical.com. Accessed 28 Mar 2023

  39. Goodman, D.: GPR-SLICE. Ground penetrating radar imaging software, user’s manual. Geophysical Archaeometry Laboratory, Los Angeles, CA, USA (2004)

    Google Scholar 

Download references

Acknowledgments

We are extremely grateful to dr. Maria Turco of the Superintendence of Archeology of Catania for the authorization for the research and to Maurel et Prom Italia s.r.l for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

Writing-original draft preparation: Introduction (Rodolfo Brancato); Methodology (Rodolfo Brancato, Marilena Cozzolino); Results and Discussion (Rodolfo Brancato, Marilena Cozzolino, Vincenzo Gentile, Sergio Montalbano); Conclusions (Marilena Cozzolino).

Corresponding author

Correspondence to Rodolfo Brancato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brancato, R., Cozzolino, M., Gentile, V., Montalbano, S. (2023). Multidisciplinary Research at the Castle of Santapau (Licodia Eubea, Italy): New Data for the Research, Protection and Enhancement of the Site. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14111. Springer, Cham. https://doi.org/10.1007/978-3-031-37126-4_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37126-4_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37125-7

  • Online ISBN: 978-3-031-37126-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics