Abstract
Since 2019, a multidisciplinary research project is in progress at the Castle of Santapau (Licodia Eubea, Italy). Different non-invasive investigation techniques, such as proximity remote sensing (UAV) and geophysical prospecting (GPR, electromagnetic, geoelectric and seismic surveys), were integrated in order to enrich the knowledge of the site. The results will be the starting point to plan and develop restoration projects for the protection and enhancement of the castle.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Arcifa, L.: Dinamiche insediative nel territorio di mineo tra tardoantico e bassomedioevo il castrum di monte catalfaro. MEFRAM 113, 269–311 (2001)
Patane, A.: Licodia Eubea, in F. Privitera, U. Spigo (eds.), Dall’Alcantara agli Iblei, Reg. Siciliana, Palermo: 133–135 (2005)
Bonacini, E.: Il borgo cristiano di Licodia Eubea, Trento: ed. Uniservice (2008)
Brancato, R.: Topografia della Piana di Catania. Quasar, Rome (2021)
Arcifa, L.: Dinamiche insediative e grande proprietà nella Sicilia bizantina. Uno sguardo archeo-logico. In: Martin, J.M., Peter-Custot, A., Prigent, V., (eds.), L’héritage byzantin en Italie (VIIIe-XIIe siècle). IV. Habitat et structure agraire, (Roma 17-18 dicembre 2010), Collection de l’Ecole Française de Rome 531, Rome: 237–267 (2017)
Cannizzo, P.M.: Licodia Eubea: le sue origini e la sua storia nel contesto della storia della Sicilia (1995)
Orsi, P.: Licodia Eubea, in Notizie Scavi di Antichità, pp. 435–440 (1904)
Politano, F.: La “Specus Immensus” di Licodia Eubea. Agora 52(15), 85–91 (2015)
Camera, M.: La ceramica di Licodia Eubea, Bari (2018)
Tsokas, G.N., Papazachos, C.B., Vafidis, A., Loukoyiannakis, M.Z., Vargemezis, G., Tzimeas, K.: The detection of monumental tombs buried in tumuli by seismic refraction. Geophysics 60(6), 1735–1742 (1995)
Barone, I., Cassiani, G., Ourabah, A., Boaga, J., Pavoni, M., Deiana, R.: Comparison and Integration of active and passive 3D surface wave measures around the Scrovegni Chapel. In: 83rd EAGE Annual Conference & Exhibition, vol. 2022(1), pp. 1–5, European Association of Geoscientists & Engineers (2022)
Scollar, I.: Electromagnetic prospecting methods in archaeology. Archaeometry 5, 146–153 (1962)
Bozzo, E., Merlanti, F., Ranieri, G., Sambuelli, L., Finzi, E.: EM-VLF soundings on the eastern hill of the archaeological site of Selinunte. Boll. Geofis. Teor. Appl. 34, 132–140 (1991)
Al-Saadi, O.S., Schmidt, V., Becken, M., Fritsch, T.: Very-high-resolution electrical resistivity imaging of buried foundations of a Roman villa near Nonnweiler Germany. Archaeol. Prospection 25(3), 209–218 (2018)
Cozzolino, M., Caliò, L.M., Gentile, V., Mauriello, P., Di Meo, A.: The discovery of the theater of Akragas (Valley of Temples, Agrigento, Italy): an archaeological confirmation of the supposed buried structures from a geophysical survey. Geosciences 10(5), 161 (2020)
Cozzolino, M., Gentile, V., Giordano, C., Mauriello, P.: Imaging buried archaeological features through ground penetrating radar: the case of the ancient saepinum (Campobasso, Italy). Geosciences 10(6), 225 (2020)
Caldara, M., Ciminale, M., De Santis, V., Noviello, M.: A multidisciplinary approach to reveal and interpret ‘missing’ archaeological features at the masseria pantano site in apulia. Archaeol. Prospect. 21(4), 301–309 (2014)
Urban, T.M., et al.: Magnetic detection of archaeological hearths in Alaska: a tool for investigating the full span of human presence at the gateway to North America. Quatern. Sci. Rev. 211, 73–92 (2019)
Verhoeven, G.: Providing an archeological bird’seye view - an overall picture of ground-based means to execute low-altitude aerial photography (LAAP) in Archeology. Archaeol. Prospect. 16(4), 233–249 (2009)
Campana, S.: Drones in archaeology state-of-the-art and future perspectives. Archaeol. Prospection 24(4), 275–296 (2017)
Seitz, C., Altenbach, H.: Project Archeye – the quadrocopter as the archaelogist’s eye, ISPRS Zurich 2011 Workshop, 14–16 September 2011, Zurich. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXVIII (1/C22), 297–302 (2011)
Remondino, F., Barazzetti, L., Nex, F., Scaioni, M., Sarazzi, D.: UAV photogrammetry for mapping and 3D modelling – current status and future perspectives, ISPRS Zurich 2011 Workshop, 14–16 September 2011, Zurich. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXVIII (1/C22), 25–31 (2011)
Rinaudo, F., Chiabrando, F., Lingua, A., Spanò, A.: Archaeological site monitoring: UAV photogrammetry could be an answer. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 39(5), 583–588 (2012)
Fiorillo, F., Jiménez Fernández-Palacios, B., Remondino, F., Barba, S.: 3D surveying and modelling of the archaeological area of Paestum Italy. Virtual Archaeol. Rev. 4(8), 55–60 (2013)
Pueschel, H., Sauerbier, M., Eisenbeiss, H.: A 3D model of castle Landenberg (CH) from combined photogrammetric processing of terrestrial and UAV-based images. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. XXXVII(B6b), 93–98 (2008)
Cozzolino, M., Gabrielli, R., Galatà, P., Gentile, V., Greco, G., Scopinaro, E.: Combined use of 3D metric surveys and non-invasive geophysical surveys for the determination of the state of conservation of the Stylite Tower (Umm ar-Rasas, Jordan). Ann. Geophys. 62(3), SE339 (2019)
Sonnemann, T.F., Malatesta, E.H., Hofman, C.L.: Applying UAS photogrammetry to analyze spatial patterns of indigenous settlement sites in the northern Dominican Republic. Archaeology in the Age of Sensing, Forte, M., Campana S (eds), Springer, New York (2016). https://doi.org/10.1007/978-3-319-40658-9_4
Orihuela, A., Molina-Fajardo, M.A.: UAV photogrammetry surveying for sustainable conservation: the case of mondújar castle (Granada, Spain). Sustainability 13, 24 (2021)
Cozzolino, M., Di Meo, A., Gentile, V.: The contribution of indirect topographic surveys (photogrammetry and the laser scanner) and GPR investigations in the study of the vulnerability of the Abbey of Santa Maria a Mare, Tremiti Islands (Italy). Ann. Geophys. 62(3), (2019)
Adamopoulos, E., Rinaudo, F.: UAS-based archaeological remote sensing: review, meta-analysis and state-of-the-art. Drones 4, 46 (2020)
Agudo, P., Pajas, J., Pérez-Cabello, F., Redón, J., Lebrón, B.: The potential of drones and sensors to enhance detection of archaeological cropmarks: a comparative study between multi-spectral and thermal imagery. Drones 2, 29 (2018)
Brooke, C., Clutterbuck, B.: Mapping heterogeneous buried archaeological features using multisensor data from unmanned aerial vehicles. Remote Sens. 12, 41 (2019)
Liu, C., Cao, Y., Yang, C., Zhou, Y., Ai, M.: Pattern identification and analysis for the traditional village using low altitude UAV-borne remote sensing: multifeatured geospatial data to support rural landscape investigation, documentation and management. J. Cult. Herit. 44, 185–195 (2020)
Parisi, E.I., Suma, M., Güleç Korumaz, A., Rosina, E., Tucci, G.: Aerial platforms (UAV) surveys in the VIS and TIR range. Applications on archaeology and agriculture. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLII-2/W11, 945–952 (2019). https://doi.org/10.5194/isprs-archives-XLII-2-W11-945-2019
Remondino, F., Spera, M.G., Nocerino, E., Menna, F., Nex, F.: State of the art in high density image matching. Photogrammet. Rec. 29, 144–166 (2014)
Zhang, J., Ten Brink, U., Toksöz, M.: Nonlinear refraction reflection travel time tomography. J. Geophys. Res. 103, 29743–29757 (1998)
Mauriello, P., Patella, D.: A data-adaptive probability-based fast ERT inversion method. Prog. Electromagn. Res. 97, 275–290 (2009)
Geophysical Homepage (2023). www.geophysical.com. Accessed 28 Mar 2023
Goodman, D.: GPR-SLICE. Ground penetrating radar imaging software, user’s manual. Geophysical Archaeometry Laboratory, Los Angeles, CA, USA (2004)
Acknowledgments
We are extremely grateful to dr. Maria Turco of the Superintendence of Archeology of Catania for the authorization for the research and to Maurel et Prom Italia s.r.l for the financial support.
Author information
Authors and Affiliations
Contributions
Writing-original draft preparation: Introduction (Rodolfo Brancato); Methodology (Rodolfo Brancato, Marilena Cozzolino); Results and Discussion (Rodolfo Brancato, Marilena Cozzolino, Vincenzo Gentile, Sergio Montalbano); Conclusions (Marilena Cozzolino).
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Brancato, R., Cozzolino, M., Gentile, V., Montalbano, S. (2023). Multidisciplinary Research at the Castle of Santapau (Licodia Eubea, Italy): New Data for the Research, Protection and Enhancement of the Site. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14111. Springer, Cham. https://doi.org/10.1007/978-3-031-37126-4_44
Download citation
DOI: https://doi.org/10.1007/978-3-031-37126-4_44
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-37125-7
Online ISBN: 978-3-031-37126-4
eBook Packages: Computer ScienceComputer Science (R0)