Graphical Visualization of Phase Surface of the Sprott Type A System Immersed in 4D | SpringerLink
Skip to main content

Graphical Visualization of Phase Surface of the Sprott Type A System Immersed in 4D

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 Workshops (ICCSA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14111))

Included in the following conference series:

  • 661 Accesses

Abstract

When formulating a system of differential equations, the main objective is to determine their solutions, in addition to visualizing the phase surface to observe the behavior of the physical phenomenon. In this work an algorithm is developed to graph phase surfaces and perform qualitative analysis to a four-dimensional (4D) system. The algorithm is implemented in the scientific software Octave obtaining the program called SystemSprott4D, which is applied to the Sprott type A system in 4D to be able to graph, phase surfaces, limit cycle and trajectories of initial conditions of the system. A qualitative analysis of the system is performed, such as symmetry of the vector field, sensitivity in the initial conditions, Lyapunov exponents, fractal dimension and limit cycle. It is found that it is a non-equilibrium system, this means that the 4D chaotic system can exhibit attracting limit cycles, these limit cycles are found by selecting different initial points. The program can be used to analyze non-linear 4D systems from various disciplines such as electronics, telecommunications, biology, meteorology, economics, medicine, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benkouider, K., Bouden, T., Halimi, M.: Analysis, circuit implementation and active control synchronization of a new 4D chaotic system with two quadratic nonlinearities. Cuarta conferencia mundial sobre sistemas complejos 4(N° 1), 1–6 (2019). https://doi.org/10.1109/ICoCS.2019.8930718

  2. Escobar, E., Abramonte, R., Aliaga, A., Gutierrez, F.: An octave package to perform qualitative analysis of nonlinear ystems immersed in 4D. Machine Learning and artificial intelligence., pp. 136–145 (2020). https://doi.org/10.3233/FAIA200775

  3. Fei, Y., Lei, G., Ke, G., Bo, Y., Qiuzhen, W., Zhou, Z.: A fully qualified four-wing four-dimensional autonomous chaotic system and its synchronization. Enriched data. Enhanced analytics. Evidence-led decisions 131, 79–88 (2017). https://doi.org/10.1016/j.ijleo.2016.11.067

    Article  Google Scholar 

  4. Guan, L.L., Xi, Y.C., Feng, C.L., Xian, M.M.: Hyper-chaotic Canonical 4-D Chua's Circuit. Conferencia Internacional de Comunicaciones, Circuitos y Sistemas 2009, pp. 820–823 (2009). https://doi.org/10.1109/ICCCAS.2009.5250380

  5. Hongyan, J., Wenxin, S., Lei, W., Guoyuan, Q.: Energy analysis of Sprott-A system and generation of a new Hamiltonian conservative chaotic system with coexisting hidden attractors. Chaos, Solitons Fractals 133, 1–9 (2020). https://doi.org/10.1016/j.chaos.2020.109635

    Article  MathSciNet  Google Scholar 

  6. Jahanshahi, H., Yousefpour, A., Munoz-Pacheco, J. M., Moroz, I., Wei, Z., Castillo, O.: A new multi-stable fractional-order four-dimensional system with self-excited and hidden chaotic attractors: dynamic analysis and adaptive synchronization using a novel fuzzy adaptive sliding mode control method. Appl. Soft Comput. J. 87, 1–15 (2020). doi.https://doi.org/10.1016/j.asoc.2019.105943

  7. Shirin, P., Viet, T.P., Karthikeyan, R., Olfa, B., Sajad, J.: A New Four-Dimensional Chaotic System With No Equilibrium Point. Avances recientes en sistemas caóticos y sincronización (págs., pp. 63–76 (2019). https://doi.org/10.1016/B978-0-12-815838-8.00004-2). Elsevier

  8. Si Gang, Q., Cao, H., Zhang Yan, B.: A new four-dimensional hyperchaotic Lorenz system and its adaptive control. Sociedad Física China e IOP Publishing Ltd, vol. 20(N° 1), pp. 1–9 (2011). https://doi.org/10.1088/1674-1056/20/1/010509

  9. Tamba, V.K., Kengne, R., Kingni, S.T., Fotsin, H.B.: A four-dimensional chaotic system with one or without equilibrium points: dynamical analysis and its application to text encryption. Avances recientes en sistemas caóticos y sincronización, pp. 277–300 (2019). https://doi.org/10.1016/B978-0-12-815838-8.00014-5

  10. Vaidyanathan, S., Tlelo-Cuautle, E., Muñoz-Pacheco, J.M., Sambas, A.: A new four-dimensional chaotic system with hidden attractor and its circuit design. In: IEEE 9th Latin American Symposium on Circuits & Systems, pp. 1–4 (2018). https://doi.org/10.1109/LASCAS.2018.8399900

  11. Velezmoro, R., Ipanaqué , R.: Un modelo para visualizar objetos en 4D con el Mathematica. ECIPerú, Vol. 12(N° 2), pp. 12–18 (2015). http://reddeperuanos.com/revista/eci2015vrevista/02matematicavelezmoro.pdf

  12. Kuznetsov, Y.A.: Elements of applied bifurcation theory, vol. 112. Springer (1998)

    Google Scholar 

  13. wiggins, S.: Introduction to applied nonlinear Dynamical systems and chaos, 2 edn., vol. 2. Springer (2003). https://doi.org/10.1007/b97481

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flabio Gutierrez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Escobar, E., Gutierrez, F., Lujan, E., Ipanaque, R., Silva, C., Abanto, L. (2023). Graphical Visualization of Phase Surface of the Sprott Type A System Immersed in 4D. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14111. Springer, Cham. https://doi.org/10.1007/978-3-031-37126-4_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37126-4_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37125-7

  • Online ISBN: 978-3-031-37126-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics