Abstract
When formulating a system of differential equations, the main objective is to determine their solutions, in addition to visualizing the phase surface to observe the behavior of the physical phenomenon. In this work an algorithm is developed to graph phase surfaces and perform qualitative analysis to a four-dimensional (4D) system. The algorithm is implemented in the scientific software Octave obtaining the program called SystemSprott4D, which is applied to the Sprott type A system in 4D to be able to graph, phase surfaces, limit cycle and trajectories of initial conditions of the system. A qualitative analysis of the system is performed, such as symmetry of the vector field, sensitivity in the initial conditions, Lyapunov exponents, fractal dimension and limit cycle. It is found that it is a non-equilibrium system, this means that the 4D chaotic system can exhibit attracting limit cycles, these limit cycles are found by selecting different initial points. The program can be used to analyze non-linear 4D systems from various disciplines such as electronics, telecommunications, biology, meteorology, economics, medicine, etc.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Benkouider, K., Bouden, T., Halimi, M.: Analysis, circuit implementation and active control synchronization of a new 4D chaotic system with two quadratic nonlinearities. Cuarta conferencia mundial sobre sistemas complejos 4(N° 1), 1–6 (2019). https://doi.org/10.1109/ICoCS.2019.8930718
Escobar, E., Abramonte, R., Aliaga, A., Gutierrez, F.: An octave package to perform qualitative analysis of nonlinear ystems immersed in 4D. Machine Learning and artificial intelligence., pp. 136–145 (2020). https://doi.org/10.3233/FAIA200775
Fei, Y., Lei, G., Ke, G., Bo, Y., Qiuzhen, W., Zhou, Z.: A fully qualified four-wing four-dimensional autonomous chaotic system and its synchronization. Enriched data. Enhanced analytics. Evidence-led decisions 131, 79–88 (2017). https://doi.org/10.1016/j.ijleo.2016.11.067
Guan, L.L., Xi, Y.C., Feng, C.L., Xian, M.M.: Hyper-chaotic Canonical 4-D Chua's Circuit. Conferencia Internacional de Comunicaciones, Circuitos y Sistemas 2009, pp. 820–823 (2009). https://doi.org/10.1109/ICCCAS.2009.5250380
Hongyan, J., Wenxin, S., Lei, W., Guoyuan, Q.: Energy analysis of Sprott-A system and generation of a new Hamiltonian conservative chaotic system with coexisting hidden attractors. Chaos, Solitons Fractals 133, 1–9 (2020). https://doi.org/10.1016/j.chaos.2020.109635
Jahanshahi, H., Yousefpour, A., Munoz-Pacheco, J. M., Moroz, I., Wei, Z., Castillo, O.: A new multi-stable fractional-order four-dimensional system with self-excited and hidden chaotic attractors: dynamic analysis and adaptive synchronization using a novel fuzzy adaptive sliding mode control method. Appl. Soft Comput. J. 87, 1–15 (2020). doi.https://doi.org/10.1016/j.asoc.2019.105943
Shirin, P., Viet, T.P., Karthikeyan, R., Olfa, B., Sajad, J.: A New Four-Dimensional Chaotic System With No Equilibrium Point. Avances recientes en sistemas caóticos y sincronización (págs., pp. 63–76 (2019). https://doi.org/10.1016/B978-0-12-815838-8.00004-2). Elsevier
Si Gang, Q., Cao, H., Zhang Yan, B.: A new four-dimensional hyperchaotic Lorenz system and its adaptive control. Sociedad Física China e IOP Publishing Ltd, vol. 20(N° 1), pp. 1–9 (2011). https://doi.org/10.1088/1674-1056/20/1/010509
Tamba, V.K., Kengne, R., Kingni, S.T., Fotsin, H.B.: A four-dimensional chaotic system with one or without equilibrium points: dynamical analysis and its application to text encryption. Avances recientes en sistemas caóticos y sincronización, pp. 277–300 (2019). https://doi.org/10.1016/B978-0-12-815838-8.00014-5
Vaidyanathan, S., Tlelo-Cuautle, E., Muñoz-Pacheco, J.M., Sambas, A.: A new four-dimensional chaotic system with hidden attractor and its circuit design. In: IEEE 9th Latin American Symposium on Circuits & Systems, pp. 1–4 (2018). https://doi.org/10.1109/LASCAS.2018.8399900
Velezmoro, R., Ipanaqué , R.: Un modelo para visualizar objetos en 4D con el Mathematica. ECIPerú, Vol. 12(N° 2), pp. 12–18 (2015). http://reddeperuanos.com/revista/eci2015vrevista/02matematicavelezmoro.pdf
Kuznetsov, Y.A.: Elements of applied bifurcation theory, vol. 112. Springer (1998)
wiggins, S.: Introduction to applied nonlinear Dynamical systems and chaos, 2 edn., vol. 2. Springer (2003). https://doi.org/10.1007/b97481
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Escobar, E., Gutierrez, F., Lujan, E., Ipanaque, R., Silva, C., Abanto, L. (2023). Graphical Visualization of Phase Surface of the Sprott Type A System Immersed in 4D. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14111. Springer, Cham. https://doi.org/10.1007/978-3-031-37126-4_36
Download citation
DOI: https://doi.org/10.1007/978-3-031-37126-4_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-37125-7
Online ISBN: 978-3-031-37126-4
eBook Packages: Computer ScienceComputer Science (R0)