Abstract
To date the management of digestate is a crucial task for anaerobic digestion process. In the present work a strategy for digestate management is thermodynamically analyzed by a commercial software for process simulation called CHEMCAD®. Pyrolysis of digestate is simulated by a minimization of the free Gibbs energy. The sequestration of the carbon dioxide (CO2) released by the pyrolysis is investigated by the addition of calcium oxide, in order to reduce CO2 emissions. The effect of the pyrolysis temperature between 400–900 ℃ and of the CaO/digestate mass ratio between 0–0.5 was discussed, as well. The CHEMCAD application allowed to investigate the chemisorption behaviour by focusing on the temperature-dependent CO2 sorption trends in relation to different values of the CaO mass ratio. Temperature below 650 ℃ should be considered for CO2 sorption by CaO. CO2 molar fraction below 10% was obtained for temperature below 450 ℃ and CaO/digestate mass ratio higher than 0.4.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Hussain, C.M., Paulraj, M.S., Nuzhat, S.: Source reduction, waste minimization, and cleaner technologies. In: Chapter 2: Source Reduction and Waste Minimization, pp. 23–59 (2022)
González, R., González, J., Rosas, J.G., Smith, R., Gómez, X.: Biochar and energy production: Valorizing swine manure through coupling co-digestion and pyrolysis. Carbon 6(2), 43 (2020)
Freda, C., Nanna, F., Villone, A., Barisano, D., Brandani, S., Cornacchia, G.: Air gasification of digestate and its co-gasification with residual biomass in a pilot scale rotary kiln. Int. J. Energy Environ. Eng. 10(3), 335–346 (2019). https://doi.org/10.1007/s40095-019-0310-3
Stauffer, E., Dolan, J.A., Newman, R.: Fire debris analysis. Academic Press (2007)
Irwin, W.J.: Chromatographic Science Series. In: Analytical Pyrolysis - A Comprehensive Guide, vol. 22. Marcel Dekker, New York (1982)
Ibrahim, H.A.H.: Introductory chapter: pyrolysis. Recent Advances in Pyrolysis, 1. BoD – Book on Demand (2020)
Zaman, C.Z., et al.: Pyrolysis: a sustainable way to generate energy from waste. vol. 1, p. 316806. Rijeka, Croatia: IntechOpen (2017)
Roddy, D.J., Manson-Whitton, C.: Biomass gasification and pyrolysis. Comprehensive Renewable Energy-Biomass & Biofuels (2013)
Lam, M.K., Lee, K.T.: Production of biodiesel using Palm oil. Biofuels: alternative feedstocks and conversation process, pp. 353–374 (2011)
Zhang, D.: Ash fouling, deposition and slagging in ultra-supercritical coal power plants. In: Ultra-Supercritical Coal Power Plants, pp. 133–183 (2013)
Konopacka-Łyskawa, D., Czaplicka, N., Szefer, A.: CaO-based high temperature CO2 sorbents–Literature review. In: Chemical and Process Engineering-Inżynieria Chemiczna i Procesowa 42, pp. 411–438 (2021)
Sreenivasulu, B., Sreedhar, I., Suresh, P., Raghavan, K.V.: Development trends in porous adsorbents for carbon capture. Environ. Sci. Technol. 49(21), 12641–12661 (2015)
Perejon, A., Romeo, L.M., Lara, Y., Lisbona, P., Martinez, A., Valverde, J.M.: The Calcium-Looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior. Appl. Energy 162, 787–807 (2016)
Chen, D., Cen, K., Cao, X., Li, Y., Zhang, Y., Ma, H.: Restudy on torrefaction of corn stalk from the point of view of deoxygenation and decarbonization. J. Anal. Appl. Pyrol. 135, 85–93 (2018)
Acharya, B., Dutta, A., Basu, P.: Chemical-looping gasification of biomass for hydrogen-enriched gas production with in-process carbon dioxide capture. Energy Fuels 23(10), 5077–5083 (2009)
Acharya, B., Dutta, A., Basu, P.: An investigation into steam gasification of biomass for hydrogen enriched gas production in presence of CaO. Int. J. Hydrogen Energy 35(4), 1582–1589 (2010)
Guoxin, H., Hao, H.: Hydrogen rich fuel gas production by gasification of wet biomass using a CO2 sorbent. Biomass Bioenerg. 33(5), 899–906 (2009)
Han, L., Wang, Q., Yang, Y., Yu, C., Fang, M., Luo, Z.: Hydrogen production via CaO sorption enhanced anaerobic gasification of sawdust in a bubbling fluidized bed. Int. J. Hydrogen Energy 36(8), 4820–4829 (2011)
Wei, L., Xu, S., Liu, J., Liu, C., Liu, S.: Hydrogen production in steam gasification of biomass with CaO as a CO2 absorbent. Energy Fuels 22(3), 1997–2004 (2008)
Wisniewski, D., Gołaszewski, J., Białowiec, A.: The pyrolysis and gasification of digestate from agricultural biogas plant. Archives of Environmental Protection 41(3), 70–75 (2015)
Doukeh, R., Bombos, M., Bombos, D., Vasilievici, G., Radu, E., Oprescu, E.-E.: Pyrolysis of digestate from anaerobic digestion on tungsten oxide catalyst. React. Kinet. Mech. Catal. 132(2), 829–838 (2021). https://doi.org/10.1007/s11144-021-01952-7
Petrovič, A., et al.: Pyrolysis of solid digestate from sewage sludge and lignocellulosic biomass: Kinetic and thermodynamic analysis, characterization of biochar. Sustainability 13(17), 9642 (2021)
Liu, J., Huang, S., Chen, K., Wang, T., Mei, M., Li, J.: Preparation of biochar from food waste digestate: pyrolysis behavior and product properties. Biores. Technol. 302, 122841 (2020)
Freda, C., Tarquini, P., Sharma, V.K., Braccio, G.: Thermodynamic improvement of solar driven gasification compared to conventional one. Energy 261, 124953 (2022)
Mendiburu, A.Z., Carvalho, J.A., Jr., Coronado, C.J.: Thermochemical equilibrium modeling of biomass downdraft gasifier: Stoichiometric models. Energy 66, 189–201 (2014)
Mendiburu, A.Z., Carvalho, J.A., Jr., Zanzi, R., Coronado, C.R., Silveira, J.L.: Thermochemical equilibrium modeling of a biomass downdraft gasifier: Constrained and unconstrained non-stoichiometric models. Energy 71, 624–637 (2014)
Freda, C., Della Vittoria, U., Fanelli, E., Cornacchia, G., Braccio, G.: Thermodynamic analysis of biomass gasification by different agents. Italian J. Eng. Sci. (2020)
Gartman, T.N., Sovetin, F.S., Novikova, D.K.: Experience in the application of the CHEMCAD program to the modeling of reactor processes. Theor. Found. Chem. Eng. 43, 944–954 (2009)
ECN Phyllis Classification: Database for the physicochemical composition of (treated) lignocellulosic biomass, micro- and macroalgae, various feedstocks for biogas production and biochar, https://phyllis.nl/Browse/Standard/ECN-Phyllis#digestate, last accessed 07 May 2023
Čater, M., Fanedl, L., Malovrh, Š, Logar, R.M.: Biogas production from brewery spent grain enhanced by bioaugmentation with hydrolytic anaerobic bacteria. Biores. Technol. 186, 261–269 (2015)
Szymanska, M., et al.: A bio-refinery concept for n and p recovery – a chance for biogas plant development. Energies 12, 155 (2019)
Sathyan, A., Haq, I., Kalamdhad, A. S., Khwaraikpam, M.: Recent advancements in anaerobic digestion: A Novel approches for waste to energy. In: Advanced Organic Waste Management, pp. 233–246. Elsevier (2022)
Fabbri, D., Torri, C.: Linking pyrolysis and anaerobic digestion (Py-AD) for the conversion of lignocellulosic biomass. Curr. Opin. Biotechnol. 38, 167–173 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Dimotta, A., Freda, C. (2023). Thermodynamic Analysis of Digestate Pyrolysis Coupled with CO2 Sorption. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14111. Springer, Cham. https://doi.org/10.1007/978-3-031-37126-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-37126-4_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-37125-7
Online ISBN: 978-3-031-37126-4
eBook Packages: Computer ScienceComputer Science (R0)