Abstract
Improve walkability, and therefore the capacity to provide safe and accessible walking opportunities, has emerged as a crucial topic especially for post-pandemic cities, seeking to create inclusive and liveable urban spaces. In this direction, a user-centred planning approach prioritises the creation of pleasant and accessible walking environments, which are essential for achieving a sustainable urban development. The physical features of the urban areas must be carefully designed and implemented to enhance the living standards, safety, and inclusiveness, also for vulnerable users. Based on the Geographic Information System (GIS) tools, this paper provides an analytical-assessment approach for evaluating walkability in urban settings, in order to identify the significant properties of urban infrastructures. The methodology is characterised by an integrated approach based on a survey process, including remote observations. The evaluation of pedestrian paths’ performances considers the most influencing attributes (e.g., sidewalk width; visibility; crosswalk provision) which have been identified and evaluated for the case study of Largo Felice in Cagliari, Italy. To obtain an overall assessment in terms of safety, approachability, and enjoyment, each of these indicators has been analysed by aggregating and cross-referencing the detected attributes. The results highlight critical issues associated with the study area, that hinder the approachability and safety of pedestrian pathways, e.g., architectural barriers, discontinuities, poor visibility. Finally, the paper provides some recommendations for improving walkability in urban areas. Future research developments will include the assessment of further walkability attributes to perform a comprehensive analysis of an extended study area and in-field survey to validate the results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Torrisi, V., Campisi, T., Ignaccolo, M., Inturri, G., Tesoriere, G.: Assessing the propensity to car sharing services in university cities: some insights for developing the co-creation process. Travel and tourism studies in transport development. Communications 24(3), G1–G14 (2022)
Tiboni, M., Rossetti, S., Vetturi, D., Torrisi, V., Botticini, F., Schaefer, M.D.: Urban policies and planning approaches for a safer and climate friendlier mobility in cities: strategies, initiatives and some analysis. Sustainability 13(4), 1778 (2021)
Campisi, T., et al.: A new vision on smart and resilient urban mobility in the aftermath of the pandemic: key factors on european transport policies. In: Gervasi, O., et al. (eds.) ICCSA 2021. LNCS, vol. 12958, pp. 603–618. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87016-4_43
Mezoued, A. M., Letesson, Q., Kaufmann, V.: Making the slow metropolis by designing walkability: a methodology for the evaluation of public space design and prioritizing pedestrian mobility. Urban Res. Pract. 15(4), 584–603 (2022). https://doi.org/10.1080/17535069.2021.1875038
Morar, Tudor, Bertolini, Luca: Planning for pedestrians: a way out of traffic congestion. Procedia – Soc. Behav. Sci. 81, 600–608 (2013). https://doi.org/10.1016/j.sbspro.2013.06.483
Moreno, C., Allam, Z., Chabaud, D., Gall, C., & Pratlong, F.: Introducing the “15-Minute City”: sustainability, resilience and place identity in future post-pandemic cities. Smart Cities 4(1), 93–111 (2021). https://doi.org/10.3390/smartcities4010006
Pucci, P., Colleoni, M. (eds.): Understanding Mobilities for Designing Contemporary Cities. RD, Springer, Cham (2016). https://doi.org/10.1007/978-3-319-22578-4
Annunziata, A., Garau, C.: A literature review on walkability and its theoretical framework. emerging perspectives for research developments. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12255, pp. 422–437. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58820-5_32
Carra, M., Rossetti, S., Tiboni, M., Vetturi, D.: Urban regeneration effects on walkability scenarios. An application of space-time assessment for the people-and-climate oriented perspective. Tema. J. Land Use Mobil. Environ 101–114 (2022). https://doi.org/10.6092/1970-9870/8644
Campisi, T., Ignaccolo, M., Inturri, G., Tesoriere, G., Torrisi, V.: Evaluation of walkability and mobility requirements of visually impaired people in urban spaces. Res. Transp. Bus. Manag. 40, 100592 (2021). https://doi.org/10.1016/j.rtbm.2020.100592
Pinna, F., Garau, C., Maltinti, F., Coni, M.: Beyond architectural barriers: building a bridge between disability and universal design. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12255, pp. 706–721. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58820-5_51
Pinna, F., Garau, C., Annunziata, A.: A literature review on urban usability and accessibility to investigate the related criteria for equality in the city. In: Gervasi, O., et al. (eds.) ICCSA 2021. LNCS, vol. 12958, pp. 525–541. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87016-4_38
Nicoletta, R., et al.: Accessibility to local public transport in cagliari with focus on the elderly. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12255, pp. 690–705. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58820-5_50
Forsyth, A.: What is a walkable place? The walkability debate in urban design. URBAN DESIGN Int. 20(4), 274–292 (2015). https://doi.org/10.1057/udi.2015.22
Caselli, B., Rossetti, S., Ignaccolo, M., Zazzi, M., Torrisi, V.: Towards the definition of a comprehensive walkability index for historical centres. In: Gervasi, O., et al. (eds.) ICCSA 2021. LNCS, vol. 12958, pp. 493–508. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87016-4_36
Fonseca, F., et al.: Smart pedestrian network: an integrated conceptual model for improving walkability. In: Pereira, P., Ribeiro, R., Oliveira, I., Novais, P. (eds.) SC4Life 2019. LNICSSITE, vol. 318, pp. 125–142. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45293-3_10
Tira, M., Pezzagno, M., Richiedei, A.: Pedestrians, Urban Spaces and Health: Proceedings of the XXIV International Conference on Living and Walking in Cities (LWC, September 12–13, 2019, Brescia, Italy). CRC Press (2020)
Garau, C., Annunziata, A., Yamu, C.: A walkability assessment tool coupling multi-criteria analysis and space syntax: the case study of Iglesias, Italy. Eur. Plan. Stud. 1–23 (2020)
Yamu, C., Garau, C.: The 15-Min City: a configurational approach for understanding the spatial, economic, and cognitive context of walkability in Vienna. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds.) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. LNCS, vol. 13377. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10536-4_26
Pellicelli, G., Caselli, B., Garau, C., Torrisi, V., Rossetti, S.: Sustainable mobility and accessibility to essential services. an assessment of the san benedetto neighbourhood in Cagliari (Italy). In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds.) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. LNCS, vol. 13382. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10592-0_31
Russo, A., Campisi, T., Tesoriere, G., Annunziata, A., Garau, C.: Accessibility and mobility in the small mountain municipality of Zafferana Etnea (Sicily): coupling of walkability assessment and space syntax. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds.) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. LNCS, vol. 13377. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10536-4_23
Blečić, I., Cecchini, A., Congiu, T., Fancello, G., Talu, V., Trunfio, G.A.: Capability-wise walkability evaluation as an indicator of urban peripherality. Environ. Plan. B Urban Anal. City Sci. 48(4), 895–911 (2021)
European Transport Safety Council (ETSC).: How safe is walking and cycling in Eu-rope?. PIN Flash Report 38. ETSC: Brussels (2020). https://etsc.eu/how-safe-is-walking-and-cycling-in-europe-pin-flash-38/. Accessed 24 April 2023
Comune di Cagliari - Servizio Smart City e Innovazione Tecnologica -Atlante demografico di Cagliari (2021). https://www.comune.cagliari.it/portale/page/it/atlante_demografico_2021?contentId=DOC112641. Accessed 24 April 2023
Guida, C., Carpentieri, G., Masoumi, H.: Measuring spatial accessibility to urban services for older adults: an application to healthcare facilities in Milan. Eur. Transp. Res. Rev. 14(1), 23 (2022). https://doi.org/10.1186/s12544-022-00544-3
Geoportale Comune di Cagliari. https://geoportale.comune.cagliari.it/. Accessed 24 April 2023
Campisi, T., Caselli, B., Rossetti, S., Torrisi, V.: The evolution of sustainable mobility and urban space planning: exploring the factors contributing to the regeneration of car parking in living spaces. Transport. Res. Procedia 60, 76–83 (2022). https://doi.org/10.1016/j.trpro.2021.12.011
Guzman, L.A., Arellana, J., Castro, W.F.: Desirable streets for pedestrians: using a street-level index to assess walkability. Transp. Res. Part D: Transp. Environ. 111, 103462 (2022). https://doi.org/10.1016/j.trd.2022.103462
Allen, D., Clark, S.: New directions in street auditing: lessons from the PERS audits. In: International Conference on Walking and Liveable Communities, Toronto, Ontario, Canada (2007)
Appolloni, L., Corazza, M.V., D’Alessandro, D.: The pleasure of walking: an innovative methodology to assess appropriate walkable performance in urban areas to support transport planning. Sustainability, 11(12), Article 12 (2019). https://doi.org/10.3390/su11123467
Clifton, K.J., Livi Smith, A.D., Rodriguez, D.: The development and testing of an audit for the pedestrian environment. Landscape Urban Plan. 80(1–2), 95–110 (2007). https://doi.org/10.1016/j.landurbplan.2006.06.008
D’Orso, G., Migliore, M.: A GIS-based method for evaluating the walkability of a pedestrian environment and prioritised investments. J. Transp. Geogr. 82, 102555 (2020). https://doi.org/10.1016/j.jtrangeo.2019.102555
Duncan, D.T., Aldstadt, J., Whalen, J., Melly, S.J., Gortmaker, S.L.: Validation of Walk Score® for estimating neighborhood walkability: an analysis of four US Metropolitan Areas. Int. J. Environ. Res. Public Health 8(11), 4160–4179 (2011). https://doi.org/10.3390/ijerph8114160
Ewing, R., Hajrasouliha, A., Neckerman, K.M., Purciel-Hill, M., Greene, W.: Streetscape features related to pedestrian activity. J. Plan. Educ. Res. 36(1), 5–15 (2016). https://doi.org/10.1177/0739456X15591585
Fina, S., et al.: OS-WALK-EU: an open-source tool to assess health-promoting residential walkability of European city structures. J. Transp. Health 27, 101486 (2022). https://doi.org/10.1016/j.jth.2022.101486
Gorrini, A., Bandini, S.: Elderly Walkability Index through GIS: Towards Advanced AI-based Simulation Models (2019)
Leslie, E., Coffee, N., Frank, L., Owen, N., Bauman, A., Hugo, G.: Walkability of local communities: using geographic information systems to objectively assess relevant environmental attributes. Health Place, 13(1), 111–122 (2007). https://doi.org/10.1016/j.healthplace.2005.11.001
Moura, F., Cambra, P., Gonçalves, A.B.: Measuring walkability for distinct pedestrian groups with a participatory assessment method: a case study in Lisbon. Landscape Urban Plan. 157, 282–296 (2017). https://doi.org/10.1016/j.landurbplan.2016.07.002
Pucci, P., Carboni, L., Lanza, G.: Accessibilità di prossimità per una città più equa. Sperimentazione in un quartiere di Milano. TERRITORIO 99, 40–52 (2022). https://doi.org/10.3280/TR2021-099006
Carr, L.J., Dunsiger, S.I., Marcus, B.H.: Walk ScoreTM as a global estimate of neighborhood walkability. Am. J. Prevent. Med. 39(5), 460–463 (2010). https://doi.org/10.1016/j.amepre.2010.07.007
Castrignano, M., Colleoni, M., Pronello, C., Boffi, M. (eds.) :Muoversi in città: Accessibilità e mobilità nella metropoli contemporanea. FrancoAngeli (2012)
Dovey, K., Pafka, E.: What is walkability? The urban DMA. Urban Stud. 57(1), 93–108 (2020). https://doi.org/10.1177/0042098018819727
Garau, C., Pavan, V.M.: Evaluating urban quality: indicators and assessment tools for smart sustainable cities. Sustainability 10(3), Article 3 (2018). https://doi.org/10.3390/su10030575
Ignaccolo, M., Torrisi, V., Le Pira, M., Calabrò, G.: A step towards walkable environments: Spatial analysis of pedestrian compatibility in an urban context. Eur. Transp. Tra-sporti Europei, 76(6), 1–12 (2020)
Pajares, E., Büttner, B., Jehle, U., Nichols, A., Wulfhorst, G.: Accessibility by proximity: addressing the lack of interactive accessibility instruments for active mobility. J. Transp. Geogr. 93, 103080 (2021). https://doi.org/10.1016/j.jtrangeo.2021.103080
Rossetti, S., Tiboni, M., Vetturi, D., Zazzi, M., Caselli, B.: Measuring pedestrian accessibility to public transport in urban areas: A GIS-based discretisation approach. Eur. Transp. Trasp. Eur. 76(2) (2020)
Gargiulo, C., Zucaro, F., Gaglione, F.: A set of variables for the elderly accessibility in urban areas. TeMA-J. Land Use Mobil. Environ. 53–66 (2018). https://doi.org/10.6092/1970-9870/5738
Grossman, A., Rodgers, M.O., Xu, Y., Guensler, R., Watkins, K.: If safety matters, let’s measure it: nationwide survey results for bicycle and pedestrian treatment prioritization. J. Transport. Eng. Part A: Syst. 145(1) (2019). https://doi.org/10.1061/JTEPBS.0000205
Rossetti, S.: Planning for Accessibility and Safety. Maggioli Editore (2020)
Schneider, R.J., Wiers, H., Schmitz, A.: Perceived safety and security barriers to walking and bicycling: insights from milwaukee. Transport. Res. Record 2676(9), 325–338 Scopus. (2022). https://doi.org/10.1177/03611981221086646
Tiboni, M., Rossetti, S.: Achieving people friendly accessibility. key concepts and a case study overview. TeMA – J. Land Use Mobil. Environ. (2014). https://doi.org/10.6092/1970-9870/2487
Gehl, J.: Cities for people. Island Press (2010). https://gehlpeople.com/
Gubbels, J.S., et al.: The impact of greenery on physical activity and mental health of adolescent and adult residents of deprived neighborhoods: a longitudinal study. Health Place 40, 153–160 (2016). https://doi.org/10.1016/j.healthplace.2016.06.002
Guzman, L.A., Arellana, J., Castro, W.F.: Desirable streets for pedestrians: using a street-level index to assess walkability. Transport. Res. Part D Transp. Environ. 111, 103462 (2022). https://doi.org/10.1016/j.trd.2022.103462
Jacobs, A. B.: Great streets (4. print). MIT Pr. (1993)
Jaskiewicz, F.: Pedestrian level of service based on trip quality. Transportation Research Circular, TRB (2000)
Garau, C., Annunziata, A.: A method for assessing the vitality potential of urban areas. The case study of the Metropolitan City of Cagliari, Italy City. Territory Architect. 9(1), 1–23 (2022). https://doi.org/10.1186/s40410-022-00153-6
Annunziata, A., Garau, C.: A literature review on the assessment of vitality and its theoretical framework. emerging perspectives for geodesign in the urban context. In: Gervasi, O., et al. (eds.) ICCSA 2021. LNCS, vol. 12958, pp. 305–322. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87016-4_23
Acknowledgements
This work is the result of a project proposal developed within the doctoral course Smart and Sustainable Cities (3rd edition) held at the University of Cagliari and coordinated by C. Garau (https://dottorati.unica.it/dotticar/smart-and-sustainable-cities-3-edizione/). The course was attended by FS to refine theoretical and methodological tools with reference to the topics researched in the framework of the "Ecosystem for Sustainable Transition in Emilia-Romagna" (ECOSISTER) Spoke 4, WP1. Funder: Project funded under the National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.5 - Call for tender No. 3277 of 30/12/2021 of Italian Ministry of University and Research funded by the European Union – NextGenerationEU. Award Number: Project code ECS00000033, Concession Decree No. 1052 of 23/06/2022 adopted by the Italian Ministry of, CUP D93C22000460001, “Ecosystem for Sustainable Transition in Emilia-Romagna” (Ecosister). The work of V. Torrisi was supported by European Union (NextGeneration EU), through the MUR-PNRR project SAMOTHRACE (ECS00000022).
Author information
Authors and Affiliations
Contributions
This paper is the result of the joint work of the authors. ‘Abstract’, ‘Introduction’ and ‘Conclusions’ were written jointly by the authors. FS wrote the ‘Case Study’; VT and FS wrote “Materials and Methods” and “Results and discussion”; SR, CG and VT coordinated and supervised the paper.
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Stabile, F., Garau, C., Rossetti, S., Torrisi, V. (2023). How to Ensure Walkable Pedestrian Paths? An Assessment in the Largo Felice Area of Cagliari (Italy). In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14110. Springer, Cham. https://doi.org/10.1007/978-3-031-37123-3_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-37123-3_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-37122-6
Online ISBN: 978-3-031-37123-3
eBook Packages: Computer ScienceComputer Science (R0)