A Mathematical Model for the Analysis of Eye Fundus Images in Healthy and Diabetic Patients | SpringerLink
Skip to main content

A Mathematical Model for the Analysis of Eye Fundus Images in Healthy and Diabetic Patients

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 Workshops (ICCSA 2023)

Abstract

In this paper, we provide a study on eye fundus images of healthy and diabetic patients. Taking benefits from its reconstruction and enhancing properties, the sampling Kantorovich algorithm is used to process the considered images, after registration and averaging processes. Moreover, a hybrid segmentation procedure applied on superficial capillary plexus images (SCP) and one using the local Phansalkar method on choriocapillary images (CC) are exploited in order to asses a cluster counting process which is based on finding connected regions according to the 8–adjacency criterion. The results achieved on the healthy and diabetic patients show that the novel strategy allows to obtain accurate data from both a mathematical and a clinical point of view.

A. Travaglini and G. Vinti have been partially supported within the 2022 GNAMPA-INdAM Project “Enhancement e segmentazione di immagini mediante operatori di tipo campionamento e metodi variazionali per lo studio di applicazioni biomediche” and G. Vinti within the projects Ricerca di Base 2019 dell’Università degli Studi di Perugia— “Integrazione, Approssimazione, Analisi Nonlineare e loro Applicazioni” and “Innovation, digitalisation and sustainability for the diffused economy in Central Italy - VITALITY (proposal identification code n. ECS_00000041)”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hagag, A.M., Gao, S.S., Jia, Y., Huang, D.: Optical coherence tomography angiography: technical principles and clinical applications in ophthalmology. Taiwan J. Ophthalmol. 7(3), 115–129 (2017)

    Article  Google Scholar 

  2. Sakamoto, A., Hangai, M., Yoshimura, N.: Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases. Ophthalmology 115(6), 1071–1078 e7 (2008)

    Google Scholar 

  3. Sander, B., Larsen, M., Thrane, L., Hougaard, J.L., Jorgensen, T.M.: Enhanced optical coherence tomography imaging by multiple scan averaging. Br. J. Ophthalmol. 89(2), 207–212 (2005)

    Article  Google Scholar 

  4. Cagini, C., et al.: Improvement of retinal OCT angiograms by Sampling Kantorovich algorithm in the assessment of retinal and choroidal perfusion. Appl. Math. Comput. 427(4), 127152 (2022)

    Google Scholar 

  5. Skarbez, K., Priestley, Y., Hoepf, M., Koevary, S.B.: Comprehensive review of the effects of diabetes on ocular health. Expert Rev. Ophthalmol. 5(4), 557–577 (2010)

    Article  Google Scholar 

  6. Bardaro, C., Butzer, P.L., Stens, R.L., Vinti, G.: Kantorovich-type generalized sampling series in the setting of Orlicz spaces. Sampling Theory Signal Image Process. 6(1), 29–52 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Costarelli, D., Vinti, G.: Approximation by multivariate generalized sampling Kantorovich operators in the setting of Orlicz spaces. Bollettino dell’Unione Matematica Italiana 4(3), 445–468 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Bardaro, C., Musielak, J., Vinti, G.: Nonlinear Integral Operators and Applications. De Gruyter Series in Nonlinear Analysis and Applications, New York, Berlin (2003)

    Book  MATH  Google Scholar 

  9. Cantarini, M., Costarelli, D., Vinti, G.: Approximation of differentiable and not differentiable signals by the first derivative of sampling Kantorovich operators. J. Math. Anal. Appl. 509(1), Art. Number 125913 (2021)

    Google Scholar 

  10. Costarelli, D., Vinti, G.: Saturation by the Fourier transform method for the sampling Kantorovich series based on bandlimited Kernels. Anal. Math. Phys. 9(4), 2263–2280 (2019). https://doi.org/10.1007/s13324-019-00334-6

    Article  MathSciNet  MATH  Google Scholar 

  11. Costarelli, D., Vinti, G.: Approximation properties of the sampling Kantorovich operators: regularization, saturation, inverse results and Favard classes in \(L^p\)-spaces. J. Fourier Anal. Appl. 28, 1–42 (2022)

    Article  MATH  Google Scholar 

  12. Musielak, J.: Orlicz Spaces and Modular Spaces, 1st edn. LNM. Springer, Berlin (1983). https://doi.org/10.1007/BFb0072210

  13. Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces. Dekker Inc., New York-Basel-Hong Kong (1991)

    MATH  Google Scholar 

  14. Asdrubali, F., et al.: Mathematical models for the improvement of detection techniques of industrial noise sources from acoustic images. Math. Methods Appl. Sci. 44(13), 10448–10459 (2021)

    Article  MathSciNet  Google Scholar 

  15. Cluni, F., Gusella, V., Vinti, G.: Masonry elastic characteristics assessment by thermographic images. Meccanica 54(9), 1339–1349 (2019)

    Article  Google Scholar 

  16. Costarelli, D., Pozzilli, P., Seracini, M., Vinti, G.: Enhancement of cone-beam computed tomography dental-maxillofacial images by sampling Kantorovich algorithm. Symmetry 13(8), Art. number 1450 (2021)

    Google Scholar 

  17. Costarelli, D., Seracini, M., Travaglini, A., Vinti, G.: Alzheimer biomarkers esteem by sampling Kantorovich algorithm. Math. Methods Appl. Sci. 1–15 (2023). https://doi.org/10.1002/mma.9268

  18. Costarelli, D., Seracini, M., Vinti, G.: A segmentation procedure of the pervious area of the aorta artery from CT images without contrast medium. Math. Methods Appl. Sci. 43(1), 114–133 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Osowska-Kurczab, A., et al.: Improvement of renal image recognition through resolution enhancement. Expert Syst. Appl. 213(4), 118836 (2023)

    Article  Google Scholar 

  20. Travaglini, A., Vinti, G., Scalera, G.B., Scialpi, M.: A large scale analysis for testing a mathematical model for the study of vascular pathologies. Mathematics 11(8), Art. Number 1831 (2023)

    Google Scholar 

  21. Costarelli, D., Seracini, M., Vinti, G.: A comparison between the sampling Kantorovich algorithm for digital image processing with some interpolation and quasi-interpolation methods. Appl. Math. Comput. 374(2) (2020)

    Google Scholar 

  22. Provis, J.M.: Development of the primate retinal vasculature. Prog. Retin. Eye Res. 20(6), 799–821 (2001)

    Article  Google Scholar 

  23. Otsu, N.: A threshold selection method from Gray-level histograms. IEEE Trans. Syst. Man Cybern. Syst. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  24. Phansalkar, N., More, S., Sabale, A., Joshi, M.: Adaptive local thresholding for detection of nuclei in diversity stained cytology images. In: International Conference on Communications and Signal Processing, pp. 218–220 (2011)

    Google Scholar 

  25. Laiginhas, R., Cabral, D., Falcão, M.: Evaluation of the different thresholding strategies for quantifying choriocapillaris using optical coherence tomography angiography. Quant. Imaging Med. Surg. 10(10), 1994–2005 (2020)

    Article  Google Scholar 

  26. Spaide, R.F.: Choriocapillaris flow features follow a power law distribution: implications for characterization and mechanisms of disease progression. Am. J. Ophthalmol. 170, 58–67 (2016)

    Article  Google Scholar 

  27. Butzer, P.L., Nessel, R.J.: Fourier Analysis and Approximation, 1st edn. Academic Press, New York-London (1971)

    Book  MATH  Google Scholar 

  28. Butzer, P.L.: A survey of the Whittaker-Shannon sampling theorem and some of its extensions. J. Math. Res. Exposition 3, 185–212 (1983)

    MathSciNet  MATH  Google Scholar 

  29. Butzer, P.L., Fischer, A., Stens, R.L.: Generalized sampling approximation of multivariate signals; theory and some applications. Note di Matematica 10(1), 173–191 (1990)

    MathSciNet  MATH  Google Scholar 

  30. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4, 389–396 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wendland, H.: Scattered Data Approximation, Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  32. Costarelli, D., Piconi, M., Vinti, G.: The multivariate Durrmeyer-sampling type operators in functional spaces. Dolomites Res. Notes Approx. 15, 128–144 (2023)

    MathSciNet  MATH  Google Scholar 

  33. Kivinukk, A., Tamberg, G.: On approximation properties of sampling operators by dilated Kernels. In: 8th International Conference on Sampling Theory and Applications, SampTA 2009, Marseille, 18–22 May 2009

    Google Scholar 

  34. Orlova, O., Tamberg, G.: On approximation properties of generalized Kantorovich-type sampling operators. J. Approx. Theory 201, 73–86 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Uji, A., Balasubramanian, S., Lei, J., Baghdasaryan, E., Al-Sheikh, M., Sadda, S.R.: Impact of multiple En Face image averaging on quantitative assessment from optical coherence tomography angiography images. Ophthalmology 124(7), 944–952 (2017)

    Article  Google Scholar 

  36. Uji, A., et al.: Multiple enface image averaging for enhanced optical coherence tomography angiography imaging. Acta Ophthalmol. 96(7), 820–827 (2018)

    Article  Google Scholar 

  37. Thévenaz, P., Ruttimann, U.E., Unser, M.A.: A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7(1), 27–41 (1998). A Publication of the IEEE Signal Processing Society

    Google Scholar 

  38. Arganda-Carreras, I., Sorzano, C.O., Kybic, J., Ortíz-de-Solórzano, C.: bUnwarpJ : consistent and elastic registration in ImageJ. In: Methods and Applications (2008)

    Google Scholar 

  39. Brown, M., Szeliski, R., Winder, S.: Multi-image matching using multi-scale oriented patches. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 510–517 (2005)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank prof. C. Cagini and prof. M. Lupidi of the Ophthalmology Section of the Department of Medicine and Surgery of the University of Perugia for having kindly provided the images used in this work.

Moreover, A. Travaglini and G. Vinti are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilitá e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM), of the network RITA (Research ITalian network on Approximation) and of the UMI group “Teoria dell’Approssimazione e Applicazioni.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Vinti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Travaglini, A., Vinti, G. (2023). A Mathematical Model for the Analysis of Eye Fundus Images in Healthy and Diabetic Patients. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14108. Springer, Cham. https://doi.org/10.1007/978-3-031-37117-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37117-2_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37116-5

  • Online ISBN: 978-3-031-37117-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics