Sentiment Processing of Socio-political Discourse and Public Speeches | SpringerLink
Skip to main content

Sentiment Processing of Socio-political Discourse and Public Speeches

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 Workshops (ICCSA 2023)

Abstract

The article deals with the development of an ontological model of words in public political discourse and texts of public speeches in the Kazakh language. The article presents an ontological model of the subject area of elections, a referendum, examples of processing queries from the knowledge base are given. A sentimental analysis of political discourse in social networks in the Kazakh language was carried out in order to determine the mood of the discussion in these sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bekmanova, G., Yelibayeva, G., Aubakirova, S., Dyussupova, N., Sharipbay, A., Nyazova, R.: Methods for analyzing polarity of the Kazakh texts related to the terrorist threats. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11619, pp. 717–730. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24289-3_53

    Chapter  Google Scholar 

  2. Yergesh, B., Bekmanova, G., Sharipbay, A.: Sentiment analysis of Kazakh text and their polarity. Web Intell. 17(1), 9–15 (2019). https://doi.org/10.3233/WEB-190396

    Article  Google Scholar 

  3. Bekmanova, G., Yergesh, B., Sharipbay, A.: Sentiment analysis model based on the word structural representation. In: Mahmud, M., Kaiser, M.S., Vassanelli, S., Dai, Q., Zhong, N. (eds.) BI 2021. LNCS (LNAI), vol. 12960, pp. 170–178. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86993-9_16

    Chapter  Google Scholar 

  4. Bekmanova, G., Yergesh, B., Sharipbay, A., Mukanova, A.: Emotional speech recognition method based on word transcription. Sensors 22(5) (2022). https://doi.org/10.3390/s22051937

  5. Yergesh, B., Bekmanova, G., Sharipbay, A.: Sentiment analysis on the hotel reviews in the Kazakh language. In: Paper Presented at the 2nd International Conference on Computer Science and Engineering, UBMK 2017, pp. 790–794 (2017). https://doi.org/10.1109/UBMK.2017.8093531

  6. Yergesh, B., Bekmanova, G., Sharipbay, A., Yergesh, M.: Ontology-based sentiment analysis of Kazakh sentences. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10406, pp. 669–677. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62398-6_47

    Chapter  Google Scholar 

  7. Zhetkenbay, L., Sharipbay, A., Bekmanova, G., Kamanur, U.: Ontological modeling of morphological rules for the adjectives in Kazakh and Turkish languages. J. Theor. Appl. Inf. Technol. 91(2), 257–263 (2016)

    Google Scholar 

  8. Bekmanova, G., et al.: A uniform morphological analyzer for the Kazakh and Turkish languages. In: Paper Presented at the CEUR Workshop Proceedings, pp. 20–30 (2017)

    Google Scholar 

  9. Raxmatovna, B.N.: Specific features of political speech. Central Asian J. Lit. Philos. Cult. 3(12), 80–87 (2022)

    Google Scholar 

  10. Tameryan, T.Yu., et al.: Political media communication: bilingual strategies in the pre-election campaign speeches. Online J. Commun. Media Technol. 9(4), e201921 (2019)

    Google Scholar 

  11. Al Maani, B., et al.: The positive-self and negative-other representation in Bashar Al-Assad’s first political speech after the Syrian uprising. Theory Pract. Lang. Stud. 12(10), 2201–2210 (2022)

    Google Scholar 

  12. Sotvoldiyevna, U.D.: Political Euphemisms in English and Uzbek languages (A comparative analysis). Eurasian J. Learn. Acad. Teach. 9, 92–96 (2022)

    Google Scholar 

  13. Dave, P.: Analysis of the political power speeches of Jr. Martin Luther King and Barrack Obama: in the light of critical discourse analysis as a literary research method. Vidhyayana-Int. Multi. Peer-Rev. E-Journal-ISSN 7(5), 2454–8596 (2022)

    Google Scholar 

  14. Abdurashetona, A.M., Ismailovich, I.O.: Methods of tagging part of speech of Uzbek language. In: 2021 6th International Conference on Computer Science and Engineering (UBMK). IEEE (2021)

    Google Scholar 

  15. Fiorelli, M., et al.: Metadata-driven semantic coordination. In: Garoufallou, E., Fallucchi, F., William De Luca, E. (eds.) MTSR 2019. CCIS, vol. 1057, pp. 16–27. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36599-8_2

    Chapter  Google Scholar 

  16. Langer, A.M.: Analysis and Design of Next-Generation Software Architectures. Springer, New York (2020). https://doi.org/10.1007/978-3-030-36899-9

  17. Lai, C.: Fast retrieval algorithm of English sentences based on artificial intelligence machine translation. In: Atiquzzaman, M., Yen, N., Xu, Z. (eds.) 2021 International Conference on Big Data Analytics for Cyber-Physical System in Smart City, vol. 102. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-7466-2_117

  18. Abdurashetona, A.M., Mokhiyakon, U.: Software features and linguistic features of Uzbek Synonymizer. In: 2022 7th International Conference on Computer Science and Engineering (UBMK). IEEE (2022)

    Google Scholar 

  19. Bekmanova, G., et al.: Linguistic foundations of low-resource languages for speech synthesis on the example of the Kazakh language. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds.) Computational Science and Its Applications–ICCSA 2022 Workshops: Malaga, Spain, 4–7 July 2022, Proceedings, Part III. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10545-6_1

  20. Ibrahim, M.: A corpus-based comparative analysis of assertive strategies in Pakistani democratic and dictatorial speeches. J. Appl. Linguist. TESOL 5(4), 6–19 (2022)

    Google Scholar 

  21. Mohammed, T.A.S., Banda, F., Patel, M.: The Topoi of Mandela’s death in the Arabic speaking media: a corpus-based political discourse analysis (2022)

    Google Scholar 

  22. Liu, M.: Stancetaking in Hong Kong political discourse: a corpus-assisted discourse study. Chin. Lang. Discourse 13(1), 79–98 (2022)

    Article  Google Scholar 

  23. Afzaal, M.: “Review of Literature.” A Corpus-Based Analysis of Discourses on the Belt and Road Initiative: Corpora and the Belt and Road Initiative, pp. 17–37. Springer, Singapore (2023)

    Google Scholar 

  24. Anand, S., Keefer, R.: From description to code: a method to predict maintenance codes from maintainer descriptions. Maintenance Reliab. Condition Monit. 2(2), 35–44 (2022)

    Article  Google Scholar 

  25. Ma, Y., et al.: An end-to-end dialogue state tracking system with machine reading comprehension and wide & deep classification. arXiv preprint arXiv:1912.09297 (2019)

  26. Saravanan, S., Sudha, K.: GPT-3 powered system for content generation and transformation. In: 2022 Fifth International Conference on Computational Intelligence and Communication Technologies (CCICT). IEEE (2022)

    Google Scholar 

  27. Dmytriv, A., et al.: Comparative analysis of using different parts of speech in the Ukrainian texts based on stylistic approach. In: CEUR Workshop Proceedings, vol. 3171 (2022)

    Google Scholar 

  28. Tretyakov, E., et al.: Sentiment analysis of social networks messages. In: Klimov, V.V., Kelley, D.J. (eds.) Biologically Inspired Cognitive Architectures 2021: Proceedings of the 12th Annual Meeting of the BICA Society. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-96993-6_61

  29. Goswami, S., Hudnurkar, M., Ambekar, S.: Fake news and hate speech detection with machine learning and NLP. PalArch’s J. Archaeol. Egypt/Egyptol. 17(6), 4309–4322 (2020)

    Google Scholar 

  30. Lee, E., et al.: Racism detection by analyzing differential opinions through sentiment analysis of tweets using stacked ensemble GCR-NN model. IEEE Access 10, 9717–9728 (2022)

    Google Scholar 

  31. Alshalan, R., Al-Khalifa, H.: A deep learning approach for automatic hate speech detection in the Saudi Twittersphere. Appl. Sci. 10(23), 8614 (2020)

    Article  Google Scholar 

  32. Chu, K.E., Keikhosrokiani, P., Asl, M.P.: A topic modeling and sentiment analysis model for detection and visualization of themes in literary texts. Pertanika J. Sci. Technol. 30(4), 2535–2561 (2022)

    Google Scholar 

  33. Babu, N.V., Kanaga, E.G.M.: Sentiment analysis in social media data for depression detection using artificial intelligence: a review. SN Comput. Sci. 3, 1–20 (2022)

    Google Scholar 

  34. Perifanos, K., Goutsos, D.: Multimodal hate speech detection in Greek social media. Multimodal Technol. Interact. 5(7), 34 (2021)

    Article  Google Scholar 

  35. Aljarah, I., et al.: Intelligent detection of hate speech in Arabic social network: a machine learning approach. J. Inf. Sci. 47(4), 483–501 (2021)

    Google Scholar 

  36. Koltsova, O., et al.: PolSentiLex: sentiment detection in socio-political discussions on Russian social media. In: Filchenkov, A., Kauttonen, J., Pivovarova, L. (eds.) Artificial Intelligence and Natural Language: 9th Conference, AINL 2020, Helsinki, Finland, 7–9 October 2020, Proceedings. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59082-6_1

  37. Mahmud, Md.A.I., et al.: Toward news authenticity: synthesizing natural language processing and human expert opinion to evaluate news. IEEE Access 11, 11405–11421 (2023)

    Google Scholar 

  38. Widodo, D.A., Iksan, N., Sunarko, B.: Sentiment analysis of Twitter media for public reaction identification on COVID-19 monitoring system using hybrid feature extraction method. Int. J. Intell. Syst. Appl. Eng. 11(1), 92–99 (2023)

    Google Scholar 

  39. Holt, K., Ustad Figenschou, T., Frischlich, L.: Key dimensions of alternative news media. Digital Journalism 7(7), 860–869 (2019). High-Choice Information Environments, vol. 25

    Google Scholar 

  40. Chang, W.-L., Tseng, H.-C.: The impact of sentiment on content post popularity through emoji and text on social platforms. In: Cyber Influence and Cognitive Threats, pp. 159–184. Academic Press (2020)

    Google Scholar 

  41. Dang, C.N., Moreno-García, M.N., De la Prieta, F.: An approach to integrating sentiment analysis into recommender systems. Sensors 21(16), 5666 (2021)

    Google Scholar 

  42. Wu, C., et al.: SentiRec: sentiment diversity-aware neural news recommendation. In: Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing (2020)

    Google Scholar 

  43. Rozado, D., Al-Gharbi, M., Halberstadt, J.: Prevalence of prejudice-denoting words in news media discourse: a chronological analysis. Soc. Sci. Comput. Rev. 08944393211031452 (2021)

    Google Scholar 

  44. Oladele, T.M., Ayetiran, E.F.: Social unrest prediction through sentiment analysis on Twitter using support vector machine: experimental study on Nigeria’s# EndSARS. Open Inf. Sci. 7(1), 20220141 (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulmira Bekmanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bekmanova, G., Yergesh, B., Ukenova, A., Omarbekova, A., Mukanova, A., Ongarbayev, Y. (2023). Sentiment Processing of Socio-political Discourse and Public Speeches. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14108. Springer, Cham. https://doi.org/10.1007/978-3-031-37117-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37117-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37116-5

  • Online ISBN: 978-3-031-37117-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics