Crowdsensing Close-Range Photogrammetry for Accurately Reconstructing a Digital Twin of a Cultural Heritage Building Using a Smartphone and a Compact Camera | SpringerLink
Skip to main content

Crowdsensing Close-Range Photogrammetry for Accurately Reconstructing a Digital Twin of a Cultural Heritage Building Using a Smartphone and a Compact Camera

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 Workshops (ICCSA 2023)

Abstract

The development of user-friendly and cost-effective survey technologies is critical in the protection and preservation of cultural heritage structures. Although they are commonly reconstructed using digital photogrammetry techniques, and with the integration of Terrestrial Laser scanners and Remotely Piloted Aircraft Systems, they are now increasingly being modeled by crowdsensed systems, which are easily accessible even to non-expert users.

As such, the goal of this research is to evaluate the performance of a smartphone and a commercial compact camera in reconstructing a detailed and accurate digital twin of a cultural heritage object. In both cases, the close-range photogrammetric technique, based on the combination of Structure for Motion and Computer Vision approaches, was used. Those methods were tested on the Ognissanti Church, located in Valenzano, Italy. MicMac Graphic User Interface and CloudCompare, two open-source software and user-friendly interfaces, were used throughout the process. Thus, once camera calibration, preprocessing, and processing phases were completed, both collected databases were compared on the base of tie points image matching, average residuals in block-bundle adjustment resolution, and processing times. Despite variations in acquisition resolution and instrumental stability, and the fact that the point cloud from smartphone camera is 3 times less dense than that from compact camera, picture matching is equivalent after 15 to 20 orientation repetitions. The resulting two clouds were almost overlapping, with an average distance of 0.01 m. These findings also matched previous outcomes in the literature for small-volume reconstruction, substantiating the notion of performance independence from the size of the modified item.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9723
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12154
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Remondino, F.: Heritage recording and 3D modeling with photogrammetry and 3D scanning. Remote Sens. 3, 1104–1138 (2011)

    Article  Google Scholar 

  2. Remondino, F., El-Hakim, S.: Image-based 3D modeling: a review. Photogramm. Rec. 21, 269–291 (2006)

    Article  Google Scholar 

  3. Robertson, D., Cipolla, R. Structure from motion. Practical Image Processing and Computer Vision. John Wiley: Hoboken, NJ, USA (2009)

    Google Scholar 

  4. Capolupo, A., Saponaro, M., Borgogno Mondino, E., Tarantino, E.: Combining interior orientation variables to predict the accuracy of Rpas-Sfm 3D models. Remote Sens. 12(17), 2674 (2020)

    Article  Google Scholar 

  5. Caradonna, G., Tarantino, E., Scaioni, M., Figorito, B.: Multi-image 3D reconstruction: a photogrammetric and structure from motion comparative analysis. In: Gervasi, O., et al. ()eds. Computational Science and Its Applications–ICCSA 2018: 18th International Conference, Melbourne, VIC, Australia, July 2–5, 2018, Proceedings, Part V, vol. 18, pp. 305–316. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-95174-4_25

  6. Furukawa, Y., Ponce, J.: Accurate, dense, and robust multiview stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1362–1376 (2010)

    Article  Google Scholar 

  7. Guarnieri, A., Pirotti, F., Vettore, A.: Cultural heritage interactive 3D models on the web: an approach using open source and free software. J. Cult. Herit. 11(3), 350–353 (2010)

    Article  Google Scholar 

  8. Balletti, C., Bertellini, B., Gottardi, C., Guerra, F.: Geomatics techniques for the enhancement and preservation of cultural heritage. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W11, 133–140 (2019)

    Google Scholar 

  9. Cianci, M.G., Colaceci, S.: Laser scanner and UAV for the 2D and 3D reconstructions of cultural heritage. Sci. Res. Inf. Technol. Ricerca Scientifica e Tecnologie dell’Informazione 12(2), 43–54 (2022)

    Google Scholar 

  10. Xu, Z., Wu, L., Shen, Y., Li, F., Wang, Q., Wang, R.: Tridimensional reconstruction applied to cultural heritage with the use of camera-equipped UAV and terrestrial laser scanner. Remote Sens. 6, 10413–10434 (2014)

    Article  Google Scholar 

  11. Tiwari, P.S., Pande, H., Gupta, S., Chandan, G., Samwal, E., Agarwal, S. Damage detection and virtual reconstruction of built heritage: an approach using high-recolution range and intensity data. J. Ind. Soc. Remote Sens. (2023)

    Google Scholar 

  12. Fassi, F., Fregonese, L., Ackermann, S., De Troia, V. Comparison between laser scanning and automated 3D modelling techniquesd to reconstruct complex and extensive cultural heritage areas. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. XL-5/W1 (2013)

    Google Scholar 

  13. Tysiac, P., Sieńska, A., Tarnowska, M., Kedziorski, P., Jagoda M. Combination of terrestrial laser scanning and UAV photogrammetry for 3D modelling and degradation assessment of heritage building based on a lighting analysis: case study—St. Adalbert Church in Gdansk, Poland. Herit. Sci. 11, 53 (2023)

    Google Scholar 

  14. Saponaro, M., Capolupo, A., Turso, A., Tarantino, E.: Cloud-to-cloud assessment of UAV and TLS 3D reconstructions of cultural heritage monuments: the case of Torre Zozzoli. In: Eighth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2020), vol. 11524, pp. 60–71. SPIE (2020)

    Google Scholar 

  15. Saponaro, M., Tarantino, E., Fratino, U.: Geometric accuracy evaluation of geospatial data using low-cost sensors on small UAVs. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10964, pp. 364–374. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95174-4_29

    Chapter  Google Scholar 

  16. Capolupo, A.: Accuracy assessment of cultural heritage models extracting 3D point cloud geometric features with RPAS SfM-MVS and TLS techniques. Drones 5(4), 145 (2021)

    Article  Google Scholar 

  17. Capolupo. A.; Maltese, A.; Saponaro M.; Costantino, D. Integration of terrestrial laser scanning and UAV-SFM technique to generate a detailed 3D textured model of a heritage building. Earth Resources and Environmental Remote Sensing/GIS Applications (SPIE) XI Conference (2020)

    Google Scholar 

  18. Pepe, M.; Alfio, V.S.; Costantino, D. UAV platforms and the SfM-MVS approach in the 3D surveys and modelling: a review in the cultural heritage field. Appl. Sci. 12 (2022)

    Google Scholar 

  19. Cutugno, M., Robustelli, U., Pugliano, G.: Structure-from-motion 3D reconstruction of the historical overpass Ponte Della Cerra: a comparison between MicMac® open source software and Metashape®. Drones 6, 242 (2022)

    Article  Google Scholar 

  20. Boccia, L., Capolupo, A., Esposito, G., Mansueto, G., Tarantino, E.: A crowd-sensing system for geomatics applications. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11622, pp. 297–312. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24305-0_23

    Chapter  Google Scholar 

  21. Saif, W., Alshibani, A.: Smartphone-based photogrammetry assessment in comparison with a compact camera for construction management applications. Appl. Sci. 12, 1053 (2022)

    Article  Google Scholar 

  22. Eker, R., Elvanoglu, N., Ucar, Z., Bilici, 3, Aydın, A.: 3D Modelling of a historic windmill: PPK-aided terrestrial photogrammetry vs smartphone app. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLIII-B2-2022 XXIV (2022)

    Google Scholar 

  23. Dabove, P., Grasso, N., Piras, M.: Smartphone-based photogrammetry for the 3D modeling of a geomorphological structure. Appl. Sci. 9, 3884 (2019)

    Article  Google Scholar 

  24. Tavani, S., Granado, P., Riccardi, U., Seers, T., Corradetti, A.: Terrestrial SfM-MVS photogrammetry from smartphone sensors. Geomorphology 367, 107318 (2020)

    Article  Google Scholar 

  25. Alessandri, L., et al.: The fusion of external and internal 3d photogrammetric models as a tool to investigate the ancient human/cave interaction: the La Sassa case study. ISPRS— ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLIII-B2–2020, 1443–1450 (2020)

    Google Scholar 

  26. Bolognesi, C. M., Fiorillo, F. Virtual representations of cultural heritage: sharable and implementable case study to be enjoyed and maintained by the community. Buildings 13, 410 (2023)

    Google Scholar 

  27. Masiero, A., Fissore, F., Piragnolo, M., Guarnieri, A., Pirotti, F., Vettore, A.: Initial evaluation of 3D reconstruction of close objects with Smartphone Stereo Vision. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLII-1, 289–293 (2018)

    Google Scholar 

  28. Yu, L., Lubineau, G. A smartphone camera and built-in gyroscope based application for non-contact yet accurate off-axis structural displacement measurements. Measurement 167, 108449 (2021)

    Google Scholar 

  29. Najathulla, B.C., Deshpande, A.S., Khandelwal, M.: Smartphone camera-based micron-scale displacement measurement: development and application in soft actuators. Instrum. Sci. Technol. 50, 616–625 (2022)

    Article  Google Scholar 

  30. Stark, E., Haffner, O., Kuˇcera, E.: Low-cost method for 3D body measurement based on photogrammetry using smartphone. Electronics 11, 1048 (2022)

    Article  Google Scholar 

  31. Matuzeviˇcius, D., Serackis, A.: Three-dimensional human head reconstruction using smartphone-based close-range video photogrammetry. Appl. Sci. 12, 229 (2021)

    Google Scholar 

  32. Remondino, F., Fraser, C.S.: Digital camera calibration methods: considerations and comparisons. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 36, 266–272 (2006)

    Google Scholar 

  33. Jasinska, A., Pyka, K., Pastucha, E., Midtiby, H.S. A simple way to reduce 3D model deformation in smartphone photogrammetry. Sensors 23, 728 (2023)

    Google Scholar 

  34. PIX4D Homepage. https://www.pix4d.com/. Accessed 27 Feb 2023

  35. Agisoft Metashape Homepage. https://www.agisoft.com/. Accessed 27 Feb 2023

  36. MicMac Homepage. https://micmac.ensg.eu/index.php/. 27 Feb 2023

  37. Wheeler, D.A. Why Open Source Software/Free Software (OSS/FS). http://www.dwheeler.com/oss_fs_why.html. 27 Feb 2023

  38. MicMac Graphic User Interface (GUI), http://clintons3d.com/plugins/other/micmacgui/index.html. Accessed 02 Mar 2023

  39. De Cadilhac, R.L.:'arte della costruzione in pietra: chiese di Puglia con cupole in asse dal secolo XI al XVI. Gangemi Editore, Roma, Italy (2011)

    Google Scholar 

  40. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, vol. 2, pp. 1150–1157 (1999)

    Google Scholar 

  41. GitHub SIFT++ Homepage. https://github.com/davidstutz/vedaldi2006-siftpp. Accessed 27 Feb 2023

  42. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  43. Levenberg, K.: A method for the solution of certain nonlinear problems in least squares. Quart. Appl. Math. 2, 164–166 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  44. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear inequalities. SIAM J. Appl. Math. 11, 431–441 (1963)

    Article  MATH  Google Scholar 

  45. MicMac documentation, MicMac, Apero, Pastis, and Other Beverages in a Nutshell! (2022)

    Google Scholar 

  46. Rupnik, E., Daakir, M., Pierrot Deseilligny, M.: MicMac – a free, open-source solution for photogrammetry. Open Geospat. Data Softw. Stand. 2(1), 1–9 (2017). https://doi.org/10.1186/s40965-017-0027-2

    Article  Google Scholar 

  47. Rusu, R.B., Cousins, S.: Point cloud library (pcl). In: IEEE International Conference on Robotics and Automation, pp. 1–4 (2011)

    Google Scholar 

  48. Lague, D., Brodu, N., Leroux, J.: Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z). ISPRS J. Photogramm. Remote Sens. 82, 10–26 (2013)

    Article  Google Scholar 

  49. Triggs, B., Mclauchlan, P.F., Hartley, R., FitzGibbon, A.W.: Bundle Adjustment -A Modern Synthesis. Lecture Notes in Computer Science. Springer Science and Business Media LLC, vol. 1883, pp. 298–372 (2000)

    Google Scholar 

  50. Pearson, K.: On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling, the London, Edinburgh, and Dublin. Philos. Mag. J. Sci. 50(302), 157–175 (1990)

    Article  MATH  Google Scholar 

  51. Saponaro, M., Capolupo, A., Caporusso, G., Tarantino, E.: Influence of co-alignment procedures on the co-registration accuracy of multi-epoch SFM points clouds. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 43, 231–238 (2021)

    Article  Google Scholar 

  52. Saponaro, M., Capolupo, A., Caporusso, G., Borgogno Mondino, E., Tarantino, E.. Predicting the accuracy of photogrammetric 3D reconstruction from camera calibration parameters through a multivariate statistical approach. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLIII-B2–2020 43, 479–486 (2020)

    Google Scholar 

  53. Saponaro, M., et al.: Data fusion of terrestrial laser scanner and remotely piloted aircraft systems points clouds for monitoring the coastal protection systems. Aquat. Ecosyst. Health Manag. 23(4), 389–397 (2020)

    Article  Google Scholar 

  54. Saponaro, M., Turso, A., Tarantino, E.: Parallel Development of Comparable Photogrammetric Workflows Based on UAV Data Inside SW Platforms. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12252, pp. 693–708. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58811-3_50

    Chapter  Google Scholar 

  55. Eker, R., Alkan, E., Aydın, A.: A comparative analysis of UAV-RTK and UAV-PPK methods in mapping different surface types. Eur. J. Forest Eng. 7(1), 12–25 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Capolupo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Monterisi, C., Capolupo, A., Tarantino, E. (2023). Crowdsensing Close-Range Photogrammetry for Accurately Reconstructing a Digital Twin of a Cultural Heritage Building Using a Smartphone and a Compact Camera. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14107. Springer, Cham. https://doi.org/10.1007/978-3-031-37114-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37114-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37113-4

  • Online ISBN: 978-3-031-37114-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics