A Two-Step Quaternionic Root-Finding Method | SpringerLink
Skip to main content

A Two-Step Quaternionic Root-Finding Method

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 Workshops (ICCSA 2023)

Abstract

In this paper we present a new method for determining simultaneously all the simple roots of a quaternionic polynomial. The proposed algorithm is a two-step iterative Weierstrass-like method and has cubic order of convergence. We also illustrate a variation of the method which combines the new scheme with a recently proposed deflation procedure for the case of polynomials with spherical roots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11210
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14013
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The zeros are all simple if they are all distinct and isolated.

References

  1. Beck, B.: Sur les équations polynomiales dans les quaternions. Enseign. Math. 25, 193–201 (1979)

    MathSciNet  MATH  Google Scholar 

  2. Dočev, K.: A variant of Newton’s method for the simultaneous approximation of all roots of an algebraic equation. Fiz. Mat. Spis. Bŭlgar. Akad. Nauk. 5(38), 136–139 (1962)

    MathSciNet  Google Scholar 

  3. Durand, É.: Solutions Numériques des Equations Algébriques. Tome I: Equations du type F(x); Racines d’un Polynôme. Masson et Cie (1960)

    Google Scholar 

  4. Falcão, M.I., Miranda, F., Severino, R., Soares, M.J.: Evaluation schemes in the ring of quaternionic polynomials. BIT Numer. Math. 58(1), 51–72 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Falcão, M.I., Miranda, F., Severino, R., Soares, M.J.: Weierstrass method for quaternionic polynomial root-finding. Math. Methods Appl. Sci. 41(1), 423–437 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Falcão, M.I.: Newton method in the context of quaternion analysis. Appl. Math. Comput. 236, 458–470 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Falcão, M.I., Miranda, F.: Quaternions: a Mathematica package for quaternionic analysis. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011. LNCS, vol. 6784, pp. 200–214. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21931-3_17

    Chapter  Google Scholar 

  8. Falcão, M.I., Miranda, F., Severino, R., Soares, M.J.: Mathematica tools for quaternionic polynomials. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10405, pp. 394–408. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62395-5_27

    Chapter  Google Scholar 

  9. Falcão, M.I., Miranda, F., Severino, R., Soares, M.J.: A modified quaternionic Weierstrass method. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds.) Computational Science and Its Applications – ICCSA 2022 Workshops (ICCSA 2022). LNCS, vol. 13377, pp. 407–419. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10536-4_27

  10. Falcão, M.I., Miranda, F., Severino, R., Soares, M.J.: Computational aspects of quaternionic polynomials - part II: root-finding methods. Math. J. (2018)

    Google Scholar 

  11. Gordon, B., Motzkin, T.: On the zeros of polynomials over division rings I. Trans. Am. Math. Soc. 116, 218–226 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grau-Sánchez, M., Noguera, M., Grau, À., Herrero, J.R.: On new computational local orders of convergence. Appl. Math. Lett. 25(12), 2023–2030 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gürlebeck, K., Sprößig, W.: Quaternionic and Cliford Calculus for Physicists and Engineers. Wiley, NY (1997)

    MATH  Google Scholar 

  14. Janovská, D., Opfer, G.: Computing quaternionic roots in Newton’s method. Electron. Trans. Numer. Anal. 26, 82–102 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Lam, T.Y.: A First Course in Noncommutative Rings. Graduate Texts in Mathematics, Springer, New York (1991). https://doi.org/10.1007/978-1-4419-8616-0

  16. Magreñán Ruiz, A.A., Argyros, I.K.: Two-step newton methods. J. Complex. 30(4), 533–553 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Miranda, F., Falcão, M.I.: Quaternion analysis package user’s guide (2014). http://w3.math.uminho.pt/QuaternionAnalysis

  18. Niven, I.: Equations in quaternions. Am. Math. Mon. 48, 654–661 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  19. Petković, I., Herceg, D.: Computer methodologies for comparison of computational efficiency of simultaneous methods for finding polynomial zeros. J. Comput. Appl. Math. 368, 112513 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sakurai, T., Petković, M.: On some simultaneous methods based on Weierstrass’ correction. J. Comput. Appl. Math. 72(2), 275–291 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice-Hall, Inc., Englewood Cliffs, NJ (1964)

    MATH  Google Scholar 

  22. Weierstrass, K.: Neuer Beweis des Satzes, dass jede ganze rationale Function einer Veränderlichen dargestellt werden kann als ein Product aus linearen Functionen derselben Veränderlichen. In: Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, vol. II, pp. 1085–1101. Berlin (1891)

    Google Scholar 

  23. Zhang, F.: Quaternions and matrices of quaternions. Linear Algebra Appl. 251, 21–57 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

Research at CMAT was partially financed by Portuguese funds through FCT - Fundação para a Ciência e a Tecnologia, within the Projects UIDB/00013/2020 and UIDP/00013/2020. Research at NIPE has been financed by FCT, within the Project UIDB/03182/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Miranda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Falcão, M.I., Miranda, F., Severino, R., Soares, M.J. (2023). A Two-Step Quaternionic Root-Finding Method. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14104. Springer, Cham. https://doi.org/10.1007/978-3-031-37105-9_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37105-9_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37104-2

  • Online ISBN: 978-3-031-37105-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics